
midOSC: a Gumstix-Based MIDI-to-OSC Converter

Sébastien Schiesser
Institute for Computer Music and Sound Technology

Zurich University of the Arts
Baslerstrasse 30, 8048 Zurich, Switzerland
sebastien.schiesser@zhdk.ch

Abstract
A MIDI-to-OSC converter is implemented on a commer-
cially available embedded linux system, tighly integrated
with a microcontroller. A layered method is developed which
permits the conversion of serial data such as MIDI to OSC
formatted network packets with an overall system latency
below 5 milliseconds for common MIDI messages.

The Gumstix embedded computer provide an interest-
ing and modular platform for the development of such an
embedded applications. The project shows great potential
to evolve into a generic sensors-to-OSC ethernet converter
which should be very useful for artistic purposes and could
be used as a fast prototyping interface for gesture acquisition
devices.

Keywords: MIDI, Open Sound Control, converter, gumstix

1. Introduction
The Institute for Computer Music and Sound Technology
(ICST) has been working for many years with Ambisonics:
a set of recording and replay techniques for multichannel
audio [8]. It has conducted research in advanced higher
order Ambisonics algorithms and published spatialisation
tools for Csound and Max/MSP [11]. It also supports con-
certs and organizes residencies for composers who want to
use its Ambisonics facilities.

The ICST has developed the mobile Ambisonics equip-
ment (mAe) for concert venues, which is able to play sound
files or process live audio in a setup with up to 64 channels
[2]. Due to the large size of this equipment and the fan noise
caused by the processing computers, many devices are situ-
ated outside a concert hall and have to be remote-controlled
via MIDI [9].

To avoid having an excessive amount of MIDI cables
and to overcome their limitations in length 1 , control sig-
nals are converted into Open Sound Control (OSC) format

1 The MIDI Manufacturers Association recommends a maxi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

[14], sent to the remote-controlled devices location and con-
verted back to MIDI. Until now, this has been done at each
conversion point through a Max/MSP patch running on a
computer connected to a MIDI interface. This is very de-
manding in terms of hardware: in the backstage system of
the mAe, a computer is dedicated to conversion purposes
only. And when MIDI devices are present on stage, an ad-
ditional laptop with interface is required.

The mAe is intended to be modular and to support several
“I/O hubs”, where audio and control data are collected and
dispatched. In order to avoid dependence on a converting
computer at each hub, it seemed appropriate to use a dedi-
cated converter which can run independently, be stacked in
a rack and which would be considerably less expensive than
a computer with MIDI interface.

Several devices with this capability already exist. Most
of them can do much more than MIDI-to-OSC conversion,
and thus are too expensive [7][5] or not commercially avail-
able [1][3][4]. A project of the University of Applied Sci-
ences of Upper Austria was about a dedicated MIDI-to-OSC
converter, but it had some drawbacks (no DHCP capabili-
ties, no maintained drivers) and has never been completed
[6]. The midOSC converter fills this gap by providing a
solution, which is economical, flexible and open for future
enhancements and modifications.

2. midOSC v1
Different possibilities have been evaluated in order to build a
dedicated MIDI-to-OSC converter: microcontrollers, field-
programmable gate arrays (FPGA) or embedded computers.
The Gumstix embedded computers 2 offer the required fea-
tures in terms of connectivity, as well as a versatile frame-
work, which allows development of other tools beyond this
specific application. Furthermore, working with a main-
tained operating system (OS) gives access to regular up-
dates of drivers or communication protocols, which makes
the product easier to use and to develop.

2.1. Hardware
Gumstix embedded computers are all based on the same
principle: a motherboard with a given CPU speed, installed

mum length for DIN cables of 15 meter, while OSC works with
twisted pairs ethernet cables, which can be up to 100 meter long.

2 http://www.gumstix.com [2009 Apr 3]

NIME 2009165



Figure 1. Gumstix cards and communication layers used in
the midOSC converter

OS and which can be connected to a number of exten-
sion cards for specific purposes: network, sound, Global
Positioning System (GPS), touchscreen, sensors. . . Many
drivers are already installed in the base image and the OS
(a Linux distribution, but Windows CE exists as third-party
software) can be accessed and configured over a serial or
ethernet connection.

The cross-compile environment OpenEmbedded (OE) 3

is used as a development platform to create and set up cus-
tom packages. A developer site, as well as a mailing list
provide the necessary user documentation 4 .

The midOSC converter is based on a Gumstix verdex
XM4 motherboard with a 400 MHz PXA270 processor, con-
nected to two extension cards: netwifimicroSD on one side
for the ethernet connection and robostix on the other side
for serial communication at custom baud rate. The robostix
works independently with an Atmel ATmega 128 microcon-
troller unit (MCU) and communicates with the motherboard
as a slave on an Inter-Integrated Circuit (I2C) bus at 400 kHz
(see Figure 1).

Since the ATmega 128 provides only two Universal
Asynchronous Receiver/Transmitters (UARTs), the first
midOSC version works with two MIDI ports. A second
version is also planned with a custom developed serial in-
terface, based on a ATmega 640 MCU, which provides four
UARTs (more details about developments in Section 4).

Connectivity is provided on the OSC side by the network
card through a standard ethernet socket, and on the MIDI
side through a custom board, connected with a flexible flat
cable to the robostix UART pins. The complete setup is
shown in Figure 2.

2.2. System design
The implemented design is based on an interrupt and call-
back method between the MCU firmware (MIDI driver) and
the linux user-space daemon written in C (Communication
Manager).

3 http://www.openembedded.org [2009 Apr 3]
4 Developer site: http://www.gumstix.net; mailing-

list: http://www.nabble.com/Gumstix-f22543.html
[2009 Apr 3]

Figure 2. Packaging of the midOSC v1 converter with the
Gumstix (right) and the custom built circuit board

The MIDI driver can be interrupted either by a byte re-
ception on a MIDI port or by a I2C call, when the Commu-
nication Manager (CM) has received some OSC data and
needs to forward it to MIDI.

The CM consists of two threads, which react either to an
incoming OSC message, or to an interruption on a General
Purpose In/Out (GPIO) pin of the verdex board, signifying
that the MIDI driver needs to send some MIDI data.

Since the I2C protocol works on a master-slave configu-
ration, the MIDI driver (slave) cannot directly interrupt the
CM (master). It also has to use an external interruption on a
GPIO line to ask the CM to start a data transfer.

Several other applications run on the lower levels of the
OS, like the network and I2C drivers, the GPIO interruption
module and a webserver, which is used for remote configu-
ration purposes. These applications are provided as standard
packages in the Gumstix distributions and are used as is.

2.3. Communication
Currently, the midOSC setup works in a node configuration,
i.e. each device is client of a router/DHCP server and has a
MIDI port offset value, assigned by a rotary switch, which
tells him the number of its first MIDI port.

A basic communication scheme in this configuration
consists of the following sequence:

1. A MIDI message is received on a UART of one device
and the communication manager is interrupted by the
MIDI driver on a GPIO line

2. The CM sends an I2C read request to the MIDI driver,
which uploads its message

3. The CM creates an OSC message containing the
MIDI port number and data, and sends it to the net-
work

4. The OSC message is received by the other devices,
interpreted and – if necessary – downloaded to their
robostix, which assign it directly to their correspond-
ing UART

Figure 3 shows the standard configuration of a port-
following transmission: an incoming MIDI message is re-
ceived on port 1 of device 1 and is broadcast with its port
number to the OSC network. Every midOSC receives the

166



Figure 3. Port-following communication on a midOSC net-
work: MIDI data is received on port 1, broadcast and for-
warded by the other devices providing a MIDI port 1

data, but only those providing the same MIDI port number
forward them.

Other types of routing can be achieved: general broad-
casting (all ports of all devices are addressed), device broad-
casting (all ports of a specific device) or strict routing (one
specific port of a given device). The OSC address patterns
are shown in Figure 4. Naturally, other OSC-enabled de-
vices can communicate in a midOSC node, assuming they
match the correct patterns. Furthermore, some improve-
ments in connectivity will be discussed in Section 4.2.

3. Timing characteristics
One of the most critical features of a real-time system is its
latencies. Therefore, timing measurements have been com-
pleted as first setup characterization.

Scope results of measurements (see Figure 5) show a
communication sequence between two devices connected
via a router. The latency – as defined by M. Nelson [10] and
J. Wright [13] – for a midOSC setup is the sum of the incom-
ing MIDI message time, GPIO interruption delay, message
upload between MIDI driver and CM of the first device, net-
work delay and message download between CM and MIDI
driver of the second device. For a 3-byte MIDI message, the
average latency is 4 ms, with a jitter of 0.4 ms and a standard
deviation of 0.1 ms.

One drawback of this setup is due to the fact, that a
message upload take part only when the complete MIDI
sequence has been received. This can cause big latencies
for long system-exclusive (SysEx) messages and is sub-
ject to buffer size limitations. However, the system is very
competitive for common messages like note on/off or con-
trol/program changes. Furthermore, the improvements dis-
cussed in Section 4.1 will correct these both problems.

4. Discussion
In order for the NIME community to profit from midOSC,
it is planned to make the project available as open hardware
and electronics by sharing schematics, circuits and source

Figure 4. OSC address patterns: a) broadcasting b) port-
following c) device broadcasting d) strict routing

Figure 5. Timing sequence of a two-byte MIDI message.
The latency is the sum of the incoming MIDI message time
(1), GPIO interruption delay (2), message upload (3), net-
work delay (4) and message download (5).

code on the ICST web site (http://www.icst.net).
To reach this goal, some improvements have to be imple-
mented.

4.1. Timing
The timing characteristics emphasised that the system la-
tency can become too high for long MIDI messages. The
best way to overcome this limitation is to transfer each byte
directly after reception without delaying the system. And
that for all available MIDI ports.

In order to achieve such timings, a faster communication
protocol than I2C has to be used. Both the ATmega MCUs
and the PXA270 microprocessor support the Serial Periph-
eral Interface (SPI) bus, which has a much higher through-
put than I2C (e.g. up to 8 MHz baud rate for a MCU with
a 16MHz clock frequency.). In addition, the currently used
GPIO interruption method has to be accurately controlled
temporally or replaced by another communication scheme.

When both tasks are implemented, the system latency
will remain constant and is estimated to be about the same
than the network delay, which in the current configuration is
approximately 1 millisecond. Then the buffer size will not
be a concern anymore.

4.2. Connectivity
For the I/O hubs of the mobile Ambisonics equipment, it is
necessary to provide four MIDI ports.

As replacement for the robostix, a custom board, based

167



on a ATmega 640 MCU will be developed. This MCU pro-
vides four UARTs and a SPI interface, which will allow to
optimize the timing characteristics in order to take full ad-
vantage of the four MIDI ports.

In order to be independent from any DHCP server, the
Zeroconf/Bonjour [12] implementation already existing in
the Gumstix base distribution will be used. Then it will be
possible to connect two midOSC devices directly to each
other or many devices to a simple ethernet switch without
DHCP capabilities.

4.3. Perspectives
Beyond MIDI-to-OSC conversion, the Gumstix embedded
systems offer a great range of possibilities for the devel-
opment of custom applications. Furthermore, the robostix
expansion card has many I/O pins exposed on its headers
cleverly arranged with one supply and one earth for each
channel. This provides standardized connections for in- and
output from external devices and sensors.

Based on the midOSC framework, generic modules will
be developed to enable low-latency bidirectional transmis-
sion of sensor data in OSC over an ethernet connection. This
tool could be used as data-gathering and normalizing node
for network performances, interactive installations or exhi-
bitions.

The pedagogical value of this project should also be em-
phasized since this system will be used as a quick prototyp-
ing tool to interface gesture acquisition devices, thus provid-
ing a time and resource-saving experimentation platform.

5. Conclusion
midOSC shows the implementation of a low-latency bidi-
rectional MIDI to ethernet converter based on a commer-
cially distributed embedded linux-system which is coupled
with a microcontroller. MIDI messages are converted to and
from OSC formatted network packets, that can be transmit-
ted in a variety of network morphologies.

For further developments, the current midOSC setup
show potential pointing into two interesting directions. On
the one hand it will be further optimized as low-latency four-
port MIDI-to-OSC converter to cover the needs of conver-
sion demanding applications like the mAe.

On the other hand, a generic and modular sensor-to-OSC
ethernet converter will be implemented, which, by taking
advantage of the available robostix connectivity, will pro-
vide a quick prototyping tool for pedagogical and artistic
purposes.

6. Acknowledgements
Thanks to Jan Schacher for fruitful conversations and im-
provement ideas. Thanks also to Peter Faerber for the intro-
duction to the mobile Ambisonics equipment and the whole
ICST staff for support, brainstorming and office sharing.

References

[1] R. Avizienis, A. Freed, T. Suzuki, and D. Wessel. “Scalable
Connectivity Processor for Computer Music Performance
Systems,” in Proc. of the Interfnational Computer Music
Conference (ICMC), Berlin, 2000

[2] P. Faerber. “The Mobile Ambisonics Equipment”, [Web
site] 2006, [2009 Apr 3], Available: http://www.icst.
net/index.php?show=163

[3] E. Fléty. “EtherSense : sensors-to-OSC digitizing in-
terface,” [Web site] 2009, [2009 Apr 3], Available:
http://recherche.ircam.fr/equipes/temps-
reel/movement/hardware/index.htm

[4] E. Fléty. “The Wise Box: a Multi-performer Wireless Sensor
Interface using WiFi and OSC,” in Proc. of the Conference
on New Interfaces for Musical Expression (NIME), Vancou-
ver, 2005, pp. 266–267

[5] A. Fraietta. “The Smart Controller Workbench,” in Proc. of
the Conference on New Interfaces for Musical Expression
(NIME), Vancouver, 2005, pp. 46–49. See also: http://
www.smartcontroller.com.au [2009 Apr 3]

[6] G. Gessert. “mOSCito: multiple OSC performance con-
troller,” [Web site] 2006, [2009 Apr 3], Available: http://
wwwhsse.fh-hagenberg.at/Projekte/mOSCito

[7] S. Kartadinata. “the gluion. advantages of an FPGA-based
sensor interface,” in Proc. of the Conference on New Inter-
faces for Musical Expression (NIME), Paris, 2006, pp. 93–
96. See also: http://www.glui.de [2009 Apr 3]

[8] D. G. Malham. “Ambisonics - A Technique for Low Cost,
High Precision Three-Dimensional Sound Diffusion,” in
Proc. of the International Computer Music Conference
(ICMC), Glasgow, 1990, pp. 118–120. See also: http:
//www.ambisonic.net [2009 Apr 3]

[9] MIDI manufacturers association. “The complete MIDI
1.0 detailed specifications,” [Web site] 2008, [2009 Apr
3], Available: http://www.midi.org/techspecs/
index.php

[10] M. Nelson, and B. Thom. “A Survey of Real-Time MIDI
Performance,” in Proc. of the Conference on New Interfaces
for Musical Expression (NIME), Hamamatsu, 2004, pp. 35–
38

[11] J. C. Schacher, P. Kocher. “Ambisonic Spatialization Tools
for Max/MSP,” in Proc. of the International Computer Music
Conference (ICMC), New Orleans, 2006

[12] D. H. Steinberg, S. Cheshire, Zero Configuration Network-
ing: The Definitive Guide, O’Reilly, 2005

[13] J. Wright. “System-Level MIDI Performance Testing,” in
Proc. of the International Computer Music Conference
(ICMC), Havana, 2001

[14] M. Wright, A. Freed, and A. Momeni. “OpenSound Control:
State of the Art 2003,” in Proc. of the Conference on New
Interfaces for Musical Expression (NIME), Montreal, 2003,
pp. 153–159

168


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	No Other Manuscripts by the Author
	------------------------------

