
Poing Impératif: Compiling Imperative and Object Oriented
Code to Faust

Kjetil Matheussen
Norwegian Center for Technology in Music and the Arts. (NOTAM)

k.s.matheussen@notam02.no

Abstract

This paper presents a new compiler called Poing
Impératif. Poing Impératif extends Faust with com-
mon features from imperative and object oriented
languages.

Imperative and object oriented features make it
easier to start using Faust without having to imme-
diately start thinking in fully functional terms. Fur-
thermore, imperative and object oriented features
may enable semi-automatic translation of impera-
tive and object oriented code to Faust.

Performance seems equal to pure Faust code if
using one of Faust’s own delay operators instead of
the array functionality provided by Poing Impératif.

Keywords

Faust, functional programming, imperative pro-
gramming, object oriented programming, compila-
tion techniques.

1 Introduction

Poing Impératif is a new compiler that extends
Faust with imperative and object oriented fea-
tures.1

The input code is either Poing Impératif code
(described in this paper), or pure Faust code.
Pure faust code and Poing Impératif code
can be freely mixed. Pure Faust code goes
through Poing Impératif unchanged, while Po-
ing Impératif code is translated to pure Faust
code.

1.1 About Faust

Faust [Orlarey et al., 2004] is a programming
language developed at the Grame Institute in
Lyon. Faust is a fully functional language espe-
cially made for audio signal processing. Faust
code is compact and elegant, and the compiler
produces impressively efficient code. It is sim-
ple to compile Faust code into many types of

1Note that since inheritance (subclasses) and poly-
morphism (method overloading) are not supported,
Poing Impératif should probably not be categorized as
an OO language.

formats such as LADSPA plugins, VST plug-
ins, Q, SuperCollider, CSound, PD, Java, Flash,
LLVM, etc. Faust also offer options to automat-
ically take advantage of multiple processors [Or-
larey et al., 2009; Letz et al., 2010] and generate
code which a C++ compiler is able to vectorize
(i.e. generating SIMD assembler instructions)
[Scaringella et al., 2003].

1.2 Contributions of Poing Impératif

Purely functional programming is unfamiliar
for many programmers, and translating exist-
ing DSP code written in object oriented or im-
perative style into Faust is not straight forward
because of different programming paradigms.

Poing Impératif can:

1. Make it easier to start using Faust with-
out having to immediately start thinking
in fully functional terms.

2. Make it easier to translate imperative and
object oriented code to Faust. Porting pro-
grams to Faust makes them:

(a) Easily available on many different
platforms and systems.

(b) Automatically take advantage of mul-
tiple processors.

(c) Possibly run faster. Faust automati-
cally optimizes code in ways which (i)
are much hassle to do manually, (ii)
are hard to think of, or (iii) may have
been overlooked.

1.3 Usage

By default, Poing Impératif starts the Faust
compiler automatically on the produced code.
Any command line option which is unknown to
Poing Impératif is sent further to the Faust com-
piler. Example:

$poing-imperatif -a jack-gtk.cpp -vec freeverb_oo.dsp >freeverb.cpp

$g++ freeverb.cpp -O2 ‘pkg-config --libs --cflags gtk+-2.0‘ -ljack -o freeverb

$./freeverb

2 Features

• Setting new values to variables. (I.e. pro-
viding imperative operators such as =, ++,
+=, etc.)

• Conditionals. (if /else)

• Arrays of floats or ints.

• return operator.

• Classes, objects, methods and construc-
tors.

• Optional explicit typing for numeric vari-
ables. Function types are implicitly typed,
while object types are explicitly typed. The
void type is untyped.

• All features of Faust are supported. Faust
code and Poing Impératif code can be
mixed.

3 Syntax (EBNF)
class = "class" classname ["(" [var_list] ")"]

"{"

{class_elem}

"}" .

var_list = var {"," var} .

var = [number_type] varname .

number_type = "int" | "float" .

class_elem = array_decl | object_decl | method | statement .

array_decl = number_type arrayname "[" expr "]" ["=" expr] ";" .

object_decl = classname objectname ["(" [expr] ")"] ";" .

method = [number_type] methodname "(" [var_list] ")"

"{"

{statement}

"}" .

expr = faust_expression | inc_assign | dec_assign | class

| method_call | object_var | array_ref .

(* Inside classes, faust expressions are extended to expr! *)

object_var = objectname "." varname .

array_ref = arrayname "[" expr "]" .

statement = method_call ";" | block | single_decl

| if | return | assignment .

method_call = objectname "." methodname "(" [expr] ")" .

block = "{" {statement} "}" .

single_decl = number_type name_list ["=" expr] ";" .

if = "if" "(" expr ")" statement ["else" statement] .

return = "return" expr ";" .

assignment = set_assign | inc_assign | dec_assign

| cni_assign | obvar_set | array_set .

set_assign = name_list "=" expr ";" .

inc_assign = name "+" "+" ";" | "+" "+" name ";" .

dec_assign = name "-" "-" ";" | "-" "-" name ";" .

cni_assign = name assign_op "=" expr ";" .

assign_op = "+" | "-" | "*" | "/" .

obvar_set = objectname "." varname "=" expr ";" .

array_set = arrayname "[" expr "]" "=" expr ";" .

classname = name .

varname = name .

arrayname = name .

objectname = name .

methodname = name .

name_list = name {"," name} .

name = alpha, {alpha | digit | "_"} .

4 Example of C++ code translated
to Poing Impératif

The C++ implementation of the Freeverb2 all-
pass filter looks like this:

class Allpass{
float feedback;

int bufsize;
int bufidx;
float *buffer;

Allpass(float bufsize,float feedback){
this.bufsize = bufsize;

this.feedback = feedback;
buffer=calloc(sizeof(float),bufsize);

}
}
float Allpass::process(float input){

float bufout = buffer[bufidx];
float output = -input + bufout;

buffer[bufidx] = input + (bufout*feedback);
if(++bufidx>=bufsize)
bufidx = 0;

return output;
}

A semi-automatic translation to Poing
Impératif yields:

class Allpass(int bufsize,float feedback){

float buffer[bufsize];
int bufidx;

process(float input){
float bufout = buffer[bufidx];
float output = -input + bufout;

buffer[bufidx] = input + (bufout*feedback);
if(++bufidx>=bufsize)

bufidx = 0;
return output;

}
};

5 Constructor

In the Allpass example above, the Poing
Impératif class had a slightly different form than
the C++ version since a constructor was not
needed.

For classes requiring a constructor, impera-
tive code can be placed directly in the class
block. A class describing a bank account giv-
ing 50 extra euros to all to new accounts, can
be written like this:

class Account(int euros){

euros += 50; // Constructor!

debit(int amount){
euros -= amount;

}
deposit(int amount){
euros += amount;

}
}

2Freeverb is a popular reverb algorithm made by
“Jezar at Dreampoint”. See Julius O. Smith’s Free-
verb page for more information about it: https://
ccrma.stanford.edu/~jos/pasp/Freeverb.html (The
web page is from his book “Spectral Audio Signal Pro-
cessing”.)

6 Accessing a Poing Impératif class
from Faust

The process method is used to bridge Poing
Impératif and Faust. If a class has a method
called process, and that process method contains
at least one return statement, Poing Impératif
creates a Faust function with the same name as
the class. We call this function the class entry
function.

The arguments for the class entry function
is created from the class arguments and the
process method arguments.

⇒ For instance, the entry function for this class:

class Vol(float volume){
process(float input){

return input*volume;
}

}

...looks like this:

Vol(volume,input) = input*volume;

...and it can be used like this:
half_volume = Vol(0.5);
process(input) = half_volume(input);

6.1 Recursive variables

In case the class has variables which could
change state between calls to the class entry
function, we use the recursive operator (e) to
store the state of those variables.

⇒ For instance, this class:

class Accumulator{
int sum;

process(int inc){
sum += inc;
return sum;

}
}

...is transformed into the following Faust code:3

Accumulator(inc) = (func0 ~ (_,_)) : retfunc0 with{

func0(sum,not_used) = (sum+inc, inc); // sum += inc;
retfunc0(sum,inc) = sum; // return sum;

};

6.2 Constructors in the class entry

function

In case a class contains constructor code or nu-
meric values initialized to a different value than
0 or 0.0, an additional state variable is used to
keep track of whether the function is called for
the first time. In case this additional state vari-
able has the value 0 (i.e. it is the first first time
the class entry function is called), a special con-
structor function is called first to initialize those
state variables.

3Simplified for clarity.

7 Conversion from Poing Impératif
to Faust

7.1 Setting values of variables

Faust is a purely functional languages. It is not
possible to give a variable a new value after the
initial assignment, as illustrated by the follow-
ing pseudocode:

Possible:
{

int a = 5;
return a

}

Impossible:

{
int a = 5;

a = 6;
return a;

}

One way to circumvent this is to use a new
variable each time we set new values. For
instance, adding 1 to a would look like this:
a2 = a1 + 1.

However, Poing Impératif uses a different ap-
proach, which is to make all operations, includ-
ing assignments, into function calls.

⇒ For example, the following code:

float a = 1.0, b=0.0;

a = a + 1.0;
b = a + 2.3;

...is transformed into:

func0(a,b) = func1(1.0 , 0.0); // a = 1.0, b=0.0
func2(a,b) = func3(a+1.0, b); // a = a+1.0

func4(a,b) = func5(a , a+2.3); // b = a+2.3

7.2 Conditionals

When every operation is a function call,
branching is simple to implement.

⇒ For instance, the following code:

if(a==0)

a=1;
else

a=2;

...is transformed into:

func1(a) = if(a==0,func2(a),func3(a)); // if(a==0)

func2(a) = func4(1); // a=1
func3(a) = func4(1); // a=2

if is here a Faust macro [Gräf, 2010], and it
is made to supports multiple signals. The if
macro looks like this:

if(a,(k1,k2),(k3,k4)) = if(a,k1,k3),if(a,k2,k4);

if(a,k,k) = k;
if(a,k1,k2) = select2(a,k2,k1);

7.3 Methods

In Poing Impératif, an object is a list of all
the variables used in a class (including method
arguments). Behind the scene, every method
receives the “this” object (and nothing more).
Every method also returns the “this” object
(and nothing more). Naturally, the “this”
object may be modified during the execution of
a method.

⇒ For instance, the method add in:

class Bank{
int a;

add(int how_much){
a += how_much;

}
}

...is transformed into:

Bank__add(a,how_much) = func0(a,how_much) with{

func0(a,how_much) = (a+how_much, how_much); // a += how_much
};

If a method takes arguments, the correspond-
ing variable in the “this” object is set automat-
ically by the caller before the method function
is called.

7.4 Return

A special return function is created for each
method which calls return. The reason for using
the return function to return values, instead
of for instance using a special variable to hold
a return value, is because it is possible to re-
turn more than one value (i.e. to return paral-
lel signals). Furthermore, it is probably cleaner
to use a special return function than to fig-
ure out how many signals the various methods
might return4 and make corresponding logic to
handle situations that might show up because
of this.

The return function uses an ’n’ argument
(holding an integer) to denote which of the
return expressions to return.

⇒ For instance, the process and process return
functions generated from this class:

class A{
process(int selector){

if(selector)
return 2;

else

return 3;
}

}

4It is also quite complicated to figure out how many
output signals an expression has. See [Orlarey et al.,
2004].

...look like this:

A__process(selector,n) = func0(selector,n) with{

func0(selector,n) = if(selector,func1(selector,n),func2(selector,n));

func1(selector,n) = (selector,0); // First return

func2(selector,n) = (selector,1); // Second return

};

A__process__return(selector,n) =

if(n==0,

2, // Return 2 from the first return

3); // Return 3 from the second return

7.5 Arrays

Faust has a primitive called rwtable which reads
from and writes to an array. The syntax for
rwtable looks like this:

rwtable(size, init, write_index, write_value, read_index);

Using rwtable to implement imperative ar-
rays is not straight forward. The problem is
that rwtable does not return a special array
object. Instead, it returns the numeric value
stored in the cell pointed to by ’read index’.
This means that there is no array object we can
send around.

Our solution is to use rwtable only when read-
ing from an array. When we write to an array,
we store the new value and array position in two
new variables.

⇒ For instance, the body of process in the fol-
lowing class:

class Array{
float buf[1000]=1.0;

process(int i){
float a = buf[i];

buf[i] = a+1.0;
}

}

...is transformed into:

/* float a = buf[i] */

func0(a, i, buf_pos, buf_val) =

func1(rwtable(1000,1.0,buf_pos,buf_val,i), i, buf_pos, buf_val);

/* buf[i] = a+1.0 */

func1(a, i, buf_pos, buf_val) =

(a, i, i, a+1.0);

However, this solution has a limitation: If a
buffer is written two times in a row, only the
second writing will have effect.

It might be possible to use Faust’s foreign
function mechanism to achieve complete array
functionality, by implementing arrays directly
in C. However, this could limit Faust’s and the
C compilers ability to optimize. It would also
complicate the compilation process, and limit
Poing Impératif to only work with C and C++.
(i.e. it would not work with Java, LLVM or
other languages (or other bitcode/binary for-
mats) Faust supports unless we implement ar-
ray interfaces to Faust for those as well.)

A fairly relevant question is how important
full array functionality is? Since full array func-
tionality is not needed for any programs writ-
ten for pure Faust, it’s tempting to believe this
functionality can be skipped.5

8 Performance compared to Faust

In Poing Impératif, Freeverb can be imple-
mented like this:6

class Allpass(int bufsize, float feedback){

int bufidx;

float buffer[bufsize];

process(input){

float bufout = buffer[bufidx];

float output = -input + bufout;

buffer[bufidx] = input + (bufout*feedback);

if(++bufidx>=bufsize)

bufidx = 0;

return output;

}

}

class Comb(int bufsize, float feedback, float damp){

float filterstore;

int bufidx;

float buffer[bufsize];

process(input){

filterstore = (buffer[bufidx]*(1.0-damp)) + (filterstore*damp);

float output = input + (filterstore*feedback);

buffer[bufidx] = output;

if(++bufidx>=bufsize)

bufidx = 0;

return output;

}

}

class MonoReverb(float fb1, float fb2, float damp, float spread){

Allpass allpass1(allpasstuningL1+spread, fb2);

Allpass allpass2(allpasstuningL2+spread, fb2);

Allpass allpass3(allpasstuningL3+spread, fb2);

Allpass allpass4(allpasstuningL4+spread, fb2);

Comb comb1(combtuningL1+spread, fb1, damp);

Comb comb2(combtuningL2+spread, fb1, damp);

Comb comb3(combtuningL3+spread, fb1, damp);

Comb comb4(combtuningL4+spread, fb1, damp);

Comb comb5(combtuningL5+spread, fb1, damp);

Comb comb6(combtuningL6+spread, fb1, damp);

Comb comb7(combtuningL7+spread, fb1, damp);

Comb comb8(combtuningL8+spread, fb1, damp);

process(input){

return allpass1.process(

allpass2.process(

allpass3.process(

allpass4.process(

comb1.process(input) +

comb2.process(input) +

comb3.process(input) +

comb4.process(input) +

comb5.process(input) +

comb6.process(input) +

comb7.process(input) +

comb8.process(input)

)

)

)

);

5One situation where it quite undoubtedly would be
useful to write or read more than once per sample iter-
ation, is for doing resampling. But for resampling, the
Faust developers are currently working on a implement-
ing a native solution. [Jouvelot and Orlarey, 2009]

6The values for the constants combtuningL1, comb-

tuningL2, allpasstuningL1, etc. are defined in the file
“examples/freeverb.dsp” in the Faust distribution.

}

}

class StereoReverb(float fb1, float fb2, float damp, int spread){

MonoReverb rev0(fb1,fb2,damp,0);

MonoReverb rev1(fb1,fb2,damp,spread);

process(float left, float right){

return rev0.process(left+right),

rev1.process(left+right);

}

}

class FxCtrl(float gain, float wet, Fx){

process(float left, float right){

float fx_left, fx_right = Fx(left*gain, right*gain);

return left *(1-wet) + fx_left *wet,

right*(1-wet) + fx_right*wet;

}

}

process = FxCtrl(fixedgain,

wetSlider,

StereoReverb(combfeed,

allpassfeed,

dampSlider,

stereospread

)

);

The version of freeverb included with the
Faust distribution (performing the exact same
computations) looks like this:7

allpass(bufsize, feedback) =

(_,_ <: (*(feedback),_:+:@(bufsize)), -) ~ _ : (!,_);

comb(bufsize, feedback, damp) =

(+:@(bufsize)) ~ (*(1-damp) : (+ ~ *(damp)) : *(feedback));

monoReverb(fb1, fb2, damp, spread)

= _ <: comb(combtuningL1+spread, fb1, damp),

comb(combtuningL2+spread, fb1, damp),

comb(combtuningL3+spread, fb1, damp),

comb(combtuningL4+spread, fb1, damp),

comb(combtuningL5+spread, fb1, damp),

comb(combtuningL6+spread, fb1, damp),

comb(combtuningL7+spread, fb1, damp),

comb(combtuningL8+spread, fb1, damp)

+>

allpass (allpasstuningL1+spread, fb2)

: allpass (allpasstuningL2+spread, fb2)

: allpass (allpasstuningL3+spread, fb2)

: allpass (allpasstuningL4+spread, fb2)

;

stereoReverb(fb1, fb2, damp, spread) =

+ <: monoReverb(fb1, fb2, damp, 0),

monoReverb(fb1, fb2, damp, spread);

fxctrl(gain,wet,Fx) = _,_

<: (*(gain),*(gain) : Fx : *(wet),*(wet)),

(1-wet),(1-wet)

+> _,_;

process = fxctrl(fixedgain,

wetSlider,

stereoReverb(combfeed,

allpassfeed,

dampSlider,

stereospread

)

);

Benchmarking these two versions against
each other showed that the version written for
pure Faust was approximately 30% faster than
the version written for Poing Impératif.

7Slightly modified for clarity.

After inspecting the generated C++ source
for the Allpass class and the Comb class, it
seemed like the only reason for the difference
had to be the use of rwtable to access arrays.

By changing the Poing Impératif versions
of Comb and Allpass to use Faust’s delay
operator @ instead of rwtable, we get this code:

class Allpass(int bufsize, float feedback){

float bufout;

process(float input){

float output = -input + bufout;

bufout = input + (bufout*feedback) : @(bufsize);

return output;

}

}

class Comb(int bufsize, float feedback, float damp){

float filterstore;

float bufout;

process(float input){

filterstore = (output*(1.0-damp)) + (filterstore*damp);

bufout = input + (filterstore*feedback) : @(bufsize);

return bufout;

}

}

Now the pure Faust version was only 7.5%
faster than the Poing Impératif version. This
result is quite good, but considering that se-
mantically equivalent C++ code were generated
both for the Comb class and the Allpass class
(the Allpass class was even syntactically equiv-
alent),8 plus that optimal Faust code were gen-
erated for the three remaining classes (MonoRe-
verb, StereoReverb, and FxCtrl), both versions
should in theory be equally efficient. However,
after further inspection of the generated C++
code, a bug in the optimization part of the
Faust compiler was revealed.9 After manually

8Semantically equivalent means here that the code
is equal, except that variable names might differ, inde-
pendent statements could be placed in a different order,
or that the number of unnecessary temporary variables
differ.

9The decreased performance was caused by two differ-
ent summing orders of the same group of signals (which
is a bug, order is supposed to be equal). This again
caused sub-summations not to be shared, probably be-
cause equal order is needed to identify common sub-
expressions. The bug only causes a slight decreased per-
formance in certain situations, it does not change the
result of the computations. The bug can also be pro-
voked by recoding the definition of allpass in the pure
Faust version of Freeverb to:

allpass(bufsize, feedback, input) = (process ~ (_,!)) : (!,_) with{

process(bufout) = (

(input + (bufout * feedback): @ (bufsize)),

(-input + bufout)

);

};

...which is just another way to write the same function.
The bug was reported right before this paper was sub-

mitted, it has been acknowledged, and the problem is
being looked into. Thanks to Yann Orlarey for a fast

fixing the two non-optimal lines of C++ code
caused by this bug in the Faust compiler, both
versions of Freeverb produce similarly efficient
code. The final two C++ sources also look se-
mantically equivalent.

9 Implementation

The main part of Poing Impératif is written in
the Qi language [Tarver, 2008]. Minor parts of
the source are written in C++ and Common
Lisp. Poing Impératif uses Faust’s own lexer.

The source is released under GPL and can be
downloaded from:
http://www.notam02.no/arkiv/src/

10 Acknowledgments

Funded by Integra, a 3-year project part-funded
by the Culture programme of the European
Commission.

References

Albert Gräf. 2010. Term rewriting extension
for the faust programming language. Pro-
ceedings of the Linux Audio Conference 2010,
pages 117–121.

Pierre Jouvelot and Yann Orlarey. 2009. Se-
mantics for multirate faust. New Computa-
tional Paradigms for Computer Music - Edi-
tions Delatour France.

Stephane Letz, Yann Orlarey, and Dominique
Fober. 2010. Work stealing scheduler for au-
tomatic parallelization in faust. Proceedings
of the Linux Audio Conference 2010, pages
147–152.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of faust. Soft
Comput., 8:623–632, September.

Yann Orlarey, Stephane Letz, and Dominique
Fober. 2009. Automatic parallelization of
faust code. Proceedings of the Linux Audio
Conference 2009.

Nicolas Scaringella, Yann Orlarey, Stephane
Letz, and Dominique Fober. 2003. Automatic
vectorization in faust. Actes des Journes
d’Informatique Musicale JIM2003, Montbe-
liard - JIM.

Mark Tarver. 2008. Functional Programming
in Qi (second edition).

response and for confirming what could be the problem.

