
UNIVERSITY OF OSLO

Department of Informatics

Realtime Audio

with Garbage

Collection

Master Thesis

Kjetil Svalastog

Matheussen

November 1, 2010

1

Abstract

Two non-moving concurrent garbage collectors tailored for realtime audio
processing are described. Both collectors work on copies of the heap to
avoid cache misses and audio-disruptive synchronizations. Both collectors
are targeted at multiprocessor personal computers.

The first garbage collector works in uncooperative environments, and can
replace Hans Boehm’s conservative garbage collector for C and C++. The
collector does not access the virtual memory system. Neither does it use a
read barrier or a write barrier.

The second garbage collector replicates the heap using a novel algorithm.
The second collector works in similar environments as the first collector, but
it requires a write barrier. Two variants of the collector are described, each
using a different type of write barrier. Neither of the write barriers should
affect audio processing performance.

2

Acknowledgments

Some of the research for this thesis have been performed at the Norwegian
Center for Technology in Music and Art (NOTAM).

Thanks to my adviser Herman Ruge Jervell for inspiration, support, and
guidance.

Thanks to my family and the Balstad/Skjetne family for helping with
moving and housing during this period.

Thanks to the Fulbright Foundation for sponsoring my stay at the
CCRMA center at Stanford University. Some of the courses I took at Stan-
ford University are also part of the Master’s degree taken here at the De-
partment of Informatics.

Thanks to Bill Schottstaedt for his work on SND and CLM, Jeffrey
Mark Siskind for advices on using his Stalin Scheme compiler, Yann Or-
larey for opening my eyes about the memory bus problem, my colleagues
at NOTAM (including Anders Vinjar) for helping with the ICMC presenta-
tion, and Christian Prisacariu and David Jeske for reading early drafts of the
ICMC paper.

3

Contents

1 Introduction 9
1.1 Garbage Collection . 9
1.2 Audio Processing . 10
1.3 Predictability . 14
1.4 Efficiency . 16
1.5 Conservative . 18
1.6 Snapshot-at-the-Beginning . 20
1.7 Chapter Summary . 21
1.8 Definition of Terms . 22
1.9 Document Overview . 24

2 Brief History of Garbage Collection 26

3 Software 32
3.1 Stalin Scheme . 32
3.2 Rollendurchmesserzeitsammler 32
3.3 TLSF . 32
3.4 SND and SND-RT . 33

4 Syntax and Semantics 34

5 The First Garbage Collector 37
5.1 Creating a snapshot . 37
5.2 The Basic Technique . 38
5.3 Issues . 40
5.4 Optimizations . 40

4

5.5 Synchronizing Garbage Collectors 42

5.6 Memory Overhead . 42

5.7 Sharing Data between Instruments 42

6 Basic Implementation 44

6.1 Structures . 45

6.2 Creating a new Heap . 46

6.3 Global Variables . 46

6.4 Initialization . 47

6.5 Allocation . 47

6.6 Running the DSP Block Function 48

6.7 The Snapshot Thread . 49

6.8 The Mark-and-Sweep Thread 49

6.9 Get Memory Info . 50

6.10 Taking Snapshot . 51

6.11 Mark . 52

6.12 Sweep . 53

7 The Dynamic Memory Allocator 54

7.1 Basic Implementation . 55

7.2 Fragmentation . 56

7.3 When Poolmem can not be used 58

7.4 Thread Safe Implementation 59

8 Several Heaps and Garbage Collectors 60

8.1 More than one Heap . 60

8.2 More than one Garbage Collector 63

9 Optimizations and Realtime Adjustments 69

9.1 Optimizing Mark . 69

9.2 Optimizing Sweep . 78

9.3 Priorities and Scheduling Policies 82

9.4 Atomic Memory . 82

9.5 Optimizing Snapshot . 83

9.6 Safety Buffer . 85

10 Finding Snapshot Duration 87

10.1 Implementation . 89

5

11 Benchmarks 95
11.1 Setup . 95
11.2 Results . 97
11.3 Data analysis . 99

12 The Second Garbage Collector 100
12.1 Description of the Algorithm 100
12.2 Complementary Stacks . 101
12.3 Memory Overhead . 103
12.4 Write Barrier for the Roots 104

13 Conclusion 106
13.1 Achievements . 106
13.2 Future Work . 106
13.3 Beyond Audio Processing . 107

A Source Codes 109
A.1 Benchmark Program . 109
A.2 Transport Stack . 113
A.3 Interruptible Locks . 115
A.4 A program for finding p(m, t, c) 116
A.5 A program for finding p(M) 122

B Benchmark Data 125
B.1 Snapshot Benchmark Data . 125
B.2 Garbage Collection Benchmark Data 138

Bibliography 147

6 LIST OF FIGURES

List of Figures

7.1 Fragmentation of the Pointer Heap 56
7.2 Memory block size chart . 58
7.3 Fragmentation of the Atomic Heap 59

10.1 Snapshot Performance on a 32 Bit Linux Realtime Kernel . . . 90
10.2 Snapshot Performance on a 64 Bit Linux Kernel 91

B.1 p(m, t, 0). Realtime kernel . 126
B.2 p(m, t, 3). Realtime kernel . 127
B.3 p(m, t, 0) and p(m, t, 3). Realtime kernel 128
B.4 p(m, t, 3)RT . Realtime kernel 129
B.5 p(m, t, 0) and p(m, t, 3)RT . Realtime kernel 130
B.6 p(m, t, 0). Non-Realtime kernel 131
B.7 p(m, t, 3). Non-Realtime kernel 132
B.8 p(m, t, 0) and p(m, t, 3). Non-Realtime kernel 133
B.9 p(m, t, 3)RT . Non-Realtime kernel 134
B.10 p(m, t, 0) and p(m, t, 3)RT . Non-Realtime kernel 135

LIST OF FIGURES 7

List of Programs

1 DTMF Instrument in SND . 12
2 Realtime Instrument Playing DTMF Tones. 12
3 The DTMF MIDI Soft Synth Implemented in C 13
4 Printing L-value, Old R-Value, and R-Value 17
5 A Sine Oscillator DSP loop 18
6 Basic Version of the First Collector 39
7 Basic Version of the First Collector, with Parallel Snapshot . . 41
8 Optimized Version of the First Collector 43
9 C Macro for Writing a Pointer to the Heap 101
10 Basic Version of the Second Collector 102
11 Extended C Macro for Writing a Pointer to the Heap 104
12 Extended Version of the Second Collector 104

8 LIST OF TABLES

List of Tables

11.1 CPU Assignments . 96
11.2 Rollendurch. Benchmarks . 97
11.3 Mark-and-Sweep Benchmarks 97
11.4 Blocking Time . 98
11.5 Time Spent by the Garbage Collector 98
11.6 Time Simulating Worst Case 98

B.1 p(m, t, 3)RT . Realtime kernel 136
B.2 p(m, t, 3)RT . Non-Realtime kernel 137
B.3 Rollendurch. Test 1 . 138
B.4 Rollendurch. Test 2 . 138
B.5 Rollendurch. Test 3 . 139
B.6 Rollendurch. Test 4 . 139
B.7 Rollendurch. Test 5 . 139
B.8 Mark-and-sweep. Test 1 . 140
B.9 Mark-and-sweep. Test 2 . 140
B.10 Mark-and-sweep. Test 3 . 140
B.11 Mark-and-sweep. Test 4 . 140
B.12 Mark-and-sweep. Test 5 . 141

9

1
Introduction

This chapter introduces garbage collection and realtime audio processing,
and the problems that can occur when combining them.

1.1 Garbage Collection

A garbage collector is used to automatically free memory in computer pro-
grams.

Garbage collectors can be divided into two types. The first type is the
tracing collector. A tracing collector finds all objects which can be traced
back to the roots1 and frees everything else [McC60].

The second type is the reference counting collector.2 The reference count-
ing collector uses a counter for each allocated object to keep track of the
number of references to an object. When the counter for an object reaches
zero, the object can be freed [Col60].

The work in this thesis mostly focuses on tracing collectors. Since pro-
grams using reference counting collectors must update the reference counters
manually, tracing collectors have potential for being simpler to use, and sim-
pler to make efficient.

1The roots are the starting point of a tracing operation. Typical roots are global
variables and values in CPU registers.

2In earlier papers, for example in [Ste75], garbage collection and reference counting
were categorized as two separate types of methods to reclaim memory. But in today’s
literature, reference counting collectors are categorized as a type of garbage collector, and
the term tracing collector has taken over the meaning of what was earlier meant by a
garbage collector.

10 Introduction

Realtime

The simplest kind of tracing collector traverses all reachable memory in one
operation. To prevent references from being overwritten while the collec-
tor traverses memory, the program (called the mutator [DLM+78]) must be
paused during the entire operation. Roger Henriksson accurately character-
izes realtime applications by their “need to guarantee short response times
to external events and to run continuously without faults for very long pe-
riods.” [Hen94]3 The simplest kind of tracing collector can not guarantee
short response time since the amount of memory to trace can be large. Thus
this type of garbage collector does not work well for realtime applications.

One way to avoid long pauses in the execution is to divide tracing into
many smaller operations, each operation doing a little bit of work. To avoid
losing references, the mutator either uses a read barrier to redirect heap
accesses or a write barrier to track heap changes. This type of garbage
collector is known as an incremental collector [Wil92, 17].

Another way to avoid long pauses is to run garbage collection in paral-
lel with the mutator [Ste75]. This type of garbage collector is known as a
concurrent collector. A concurrent collector usually needs a read barrier or
a write barrier to synchronize the collector with the mutator.

To increase audio processing performance, the work in this thesis focuses
on doing garbage collection in parallel.

1.2 Audio Processing

By tailoring garbage collectors for audio processing, we hope to achieve higher
performance and reliability. To find features of audio code, we look at code
in SND4 (version 10.7, released 6th of July 2009).

SND is both a sound editor and a programming environment for sound.
294 instruments written for the programming language Scheme are included.
An instrument in SND is a function which produces or manipulates sound.
Most of the instruments in SND are implemented by William Schottstaedt,
but not all of them are invented by him.

3Roger Henriksson’s exact quote from [Hen94]:

A real time application is characterized by the need to guarantee short re-
sponse times to external events and to run continuously without faults for
very long periods.

4http://ccrma.stanford.edu/software/snd/

1.2 Audio Processing 11

SND was chosen as study object because of familiarity, that there is a
large number of instruments available, and that instruments are straight
forwardly written. Instruments in other music programming systems are
often divided into at least two functions. They are divided to avoid allocation
and initialization to be performed in the realtime thread. SND, on the other
hand, usually allocates, initialize and process sound in the same function.

The instruments in SND are not written to run in realtime, but by hav-
ing a realtime garbage collection, it is usually simple to translate an SND
instrument into doing so.

Looking at instruments in SND, we find that:

1. Based on the first 19 instruments (they seems representative for the
rest), the average length of an instrument is 45 lines of code. On aver-
age, 10.3 pointers are referenced from inside inner loops. The median
is 8 pointers.5

2. Both reading and writing to allocated memory is common in those
parts of the code where samples are processed (the inner loops).

3. Neither of the 294 instruments writes pointers inside inner loops.6

Program 1 shows the source code of an instruments in SND which plays
Dual Tone Multiple Frequencies (DTMF) sounds. DTMF sounds are used
for dialing telephone numbers. Data used for calculating sound is allocated
and initialized between line 7 and line 19. The sound itself is calculated
between line 22 and line 25 (this is the inner loop).

Realtime

To better know the advantage of using a garbage collector for realtime audio
processing, and to know what it can be used for, we will do a brief study of
a realtime instrument.

Program 2 uses the algorithm from program 1 to play DTMF sounds in
realtime.7 Program 2 works by spawning two new coroutines [Con63, DN66]
each time a note on MIDI message is received. The first coroutine produces
sound (line 7), and the second coroutine waits for a note off MIDI message
(line11).

5Name of instrument(number of referenced pointers): pluck(2), vox(21), fofins(4), fm-
trumpet(13), pqw-vox(57), stereo-flute(7), fm-bell(8), fm-insect(6), fm-drum(9), gong(9),
attract(0), pqw(10), tubebell(7), wurley(8), rhodey(7), hammondoid(5), metal(8),
drone(4), canter(11).

6The source code of all 294 instruments have been checked.
7Making it possible to dial phone numbers using a MIDI keyboard. Program 2 is

written for the SND-RT music programming system [Mat10].

12 Introduction

Program 1 DTMF Instrument in SND. The Instrument is Written by Bill
Schottstaedt.

1

2 (definstrument (touch-tone start telephone-number)
3 (let ((touch-tab-1 ’(0 697 697 697 770 770 770 852 852 852 941 941 941))
4 (touch-tab-2 ’(0 1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477)))
5 (do ((i 0 (+ i 1)))
6 ((= i (length telephone-number)))
7 (let* ((k (list-ref telephone-number i))
8 (beg (seconds->samples (+ start (* i .4))))
9 (end (+ beg (seconds->samples .3)))

10 (i (if (number? k)
11 (if (not (= 0 k))
12 k
13 11)
14 (if (eq? k ’*)
15 10
16 12)))
17 (frq1 (make-oscil :frequency (list-ref touch-tab-1 i)))
18 (frq2 (make-oscil :frequency (list-ref touch-tab-2 i))))
19 (ws-interrupt?)
20 (run
21 (lambda ()
22 (do ((j beg (+ 1 j)))
23 ((= j end))
24 (outa j (* 0.1 (+ (oscil frq1) (oscil frq2)))))))))))
25

Program 2 Realtime Instrument Playing DTMF Tones.
1 (<rt-stalin>
2 (define touch-tab-1 ’(697 697 697 770 770 770 852 852 852 941 941 941))
3 (define touch-tab-2 ’(1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477))
4 (while #t
5 (wait-midi :command note-on
6 (define number (modulo (midi-note) 12))
7 (define tone (sound
8 (out (* (midi-vol)
9 (+ (oscil :freq (list-ref touch-tab-1 number))

10 (oscil :freq (list-ref touch-tab-2 number)))))))
11 (spawn
12 (wait-midi :command note-off :note (midi-note)
13 (stop tone))))))

We compare program 2 with fairly equivalent code implemented in C.
Program 3 uses a system called “Realtime sound system” to handle corou-
tines, realtime memory allocation, MIDI and audio communication.8 We
see a clear difference in program size between program 2 and program 3, al-
though they do exactly the same. Adding a garbage collector to the C version

8Although it would be possible to implement “Realtime sound system”, it is not a real
system, but invented only for this section in order to do a comparison between Scheme
and C for audio programming: We have provided “Realtime sound system” with the same
functionality as is provided to program 2 by SND-RT.

1.2 Audio Processing 13

Program 3 The DTMF MIDI Soft Synth Implemented in C

#include <clm.h>
#include <realtime_sound_system.h>

typedef struct tone_t{
mus_t *oscil1;
mus_t *oscil2;
float volume;

} tone_t;

int touch_tab_1[] = { 697, 697, 697, 770, 770, 770, 852, 852, 852, 941, 941, 941};
int touch_tab_2[] = {1209, 1336, 1477, 1209, 1336, 1477, 1209, 1336, 1477, 1209, 1336, 1477};

void tone_player(float **samples,int num_samples, void* arg){
tone_t *tone = (tone_t*)arg;
int i;
for(i = 0 ; i < num_samples ; i++){
float sample = tone->volume * (mus_oscil(tone->oscil1) + mus_oscil(tone->oscil2));
samples[0][i] = sample; // Left channel
samples[1][i] = sample; // Right channel

}
}

void player_coroutine(void *arg){
midi_t *midi_on = (midi_t*)arg;
tone_t *tone = realtime_alloc(sizeof(tone_t));
int number = midi_on->note % 12;
tone->oscil1 = make_oscil(touch_tab_1[number]);
tone->oscil2 = make_oscil(touch_tab_2[number]);
tone->volume = midi_on->vol;
player_t *player = add_sound(tone_player,tone);
while(true){
midi_t *midi_off = wait_midi();
if(midi_off->type==COMMAND_NOTE_OFF && midi_off->note==midi_on->note){

remove_sound(player);
free_oscil(tone->oscil1);
free_oscil(tone->oscil2);
realtime_free(tone);
realtime_free(midi_on);
realtime_free(midi_off);
return;

}else
realtime_free(midi_off);

}
}

void realtime_process(){
while(true){
midi_t *midi = wait_midi();
if(midi->type==COMMAND_NOTE_ON)

spawn_coroutine(player_coroutine,midi);
else

realtime_free(midi);
}

}

int main(){
start_realtime_sound_system(realtime_process);
return 0;

}

14 Introduction

of the MIDI soft synth would only make the program 9 lines shorter, while
the Scheme version could not have been written without a garbage collector.
(Data are stored implicitly in closures in the Scheme version.9)

In addition, while a Scheme program can implement coroutines by using
continuations, a C program is forced to implement coroutines by changing
system execution context, for instance by switching stack and calling setjmp
and longjmp. Coroutines using continuations can be made faster in Scheme
(and other functional languages) since switching execution can be as simple
as doing a jump.

1.3 Predictability

The goal of this thesis is to create garbage collectors that minimize the chance
of interrupts in the stream of data sent to the soundcard. To do that, it is
useful to know how a soundcard works. Inside a soundcard there is a small
hardware buffer which must be filled with new data at regular intervals.
When the soundcard is ready to receive new data, an interrupt triggers audio
processing code to start working.10 The amount of data required to fill the
soundcard buffer is called a block, and the length of a block is normally
between 32 and 4096 samples per sound channel (known as a frame). The
samplerate is usually 44100Hz or 48000Hz.

For a soundcard running with a samplerate of 48000Hz, and a block length
of 32 frames, the duration of a block will be 0.67ms. Having a higher sam-
plerate than 48000Hz, or a lower block length than 32 frames, is uncommon.

In case audio code is unable to fill the hardware buffer fast enough, one
of two things normally happens: 1. A block of empty data is played, or: 2.
The previous block is played one more time. The sound we hear when this
happens is called a glitch.

To avoid glitches, audio code must be coded efficiently, but equally impor-
tant is that the audio code behaves predictably. For example, it is expected
that a program will fail if it runs too many oscillators at once, but we don’t
want to expect a program to maybe fail if we repeatedly start and stop 1000
oscillator. The program must behave consistently. If the program succeeds

9while, spawn, sound and wait-midi are macros which puts their bodies into lambda
blocks.

10It should also be noted that audio code are usually not communicating directly with
the soundcard. These days, audio code commonly communicates with a sound system
such as JACK for Linux [LFO05], Core Audio for Mac OS X, or DirectSound or ASIO
for Windows. These systems provide higher level interfaces to the soundcard, but the
principle of generating blocks of samples at regular intervals is similar.

1.3 Predictability 15

the first time, it must also succeed all subsequent times. And similarly, if the
program fails the first time, it must also fail all subsequent times.

Two Criteria for Predictability

One criteria for a garbage collector to perform predictably is that there must
be an upper bound on the time used to allocate one block of memory, re-
gardless of the amount, or type, of previously allocated memory.

Another criteria is that there must be an upper bound on the accumulated
time spent by the garbage collector within each block, regardless of the state
of the heap.

Lower Bound and Upper Bound

The two criteria above defined upper bounds both on allocating time and
garbage collecting time. But for interactive usage, we also need a lower
bound which is regularly equal to the upper bound.

Here is an example: Lets say the upper bound for the time spent col-
lecting garbage is 0.09ms per allocation. During rehearsal for a concert, the
time spent collecting garbage was seldom as high as 0.09ms, and no glitches
were heard. At the concert, almost the same code was run, but this time
occasional clusters of 0.09ms was spent collecting garbage, and the audience
heard glitches. A garbage collector specified to support hard realtime by
guaranteeing an upper bound did not perform adequately. In order to use
this garbage collector correctly, it would have been necessary for the user to
investigate when and how often memory was allocated. But even if it was
possible, a musician who wants to focus on performing music should not have
to do this. Especially if the musician used ready-made software and had no
technical training.

The example above does not tell us that lower bound must always be
equal to upper bound, but rather that the user needs to hear a glitch during
rehearsal in order to know when the system is pushed too far. But it would
be impractical if a glitch only appeared at the end of the rehearsal, and
maybe the rehearsal would have to be repeated. So in this thesis, 1 second is
the longest amount of time until the lower bound must be equal to the upper
bound. In other words, worst case must happen at least once a second.

For the example above, 1 second may sound lower than necessary. But
to better know the limitations of the software, it is an advantage to have a

16 Introduction

fast feedback.11

1.4 Efficiency

Besides keeping deadlines and behaving predictably, a garbage collector
should also avoid making audio code run slower.

To maintain efficiency of audio processing algorithms, we need to know
where time is spent. When the audio code fills a block of audio, it is common
to go through several for loops which produces or manipulates samples. Each
of these loops iterates between 32 and 4096 frames. We call these loops
Digital Signal Processing loops (DSP loops). One example of a DSP loop
was present in the function tone player in program 3. Another example was
present between line 7 and 11 in program 2.

Since 44100 or 48000 number of samples are usually processed per second,
other operations, such as handling user events or selecting which DSP loop
to run, are likely to happen far less often than the code running inside the
DSP loops.

Read and Write Barriers

It is common for realtime garbage collectors to use a write barrier to track
heap changes, or a read barrier to redirect heap accesses. These barriers are
often used so that memory can be reclaimed incrementally or concurrently.
A summary of barrier techniques for incremental garbage collection can be
found in [Pir98].

The main performance concern of using a read or a write barrier for audio
code, is if barrier code is added inside DSP loops. Not only will the extra
instructions required by a read or write barrier be executed for each sample,
but barriers can also destroy vectorizations [SOLF03].

Another problem is unpredictable cache misses. Read barriers and write
barriers increase the number of instructions performed by the mutator, and
by putting less pressure on the CPU cache, the CPU cache may behave more
predictably.

Write Barriers

In section 1.2 we saw that no pointers were written inside DSP loops. There-
fore, a write barrier should not decrease performance of DSP loops if the

11The value of 1 second is used throughout this thesis because it seems like an appropri-
ate duration. But in an implementation, it would be natural if the value could be adjusted
by the user.

1.4 Efficiency 17

write barrier is used only for writing pointers. This means that the largest
disadvantage of using a write barrier for audio programming is that it be-
comes hard to use existing languages if they lack support for write barriers.

(At this point, we also introduce three new terms: L-value, R-value , and
Old R-Value . These are the values that a write barrier can operate on. The
C program listed in program 4 prints these three values to the terminal for
the assignment a = 5 .)

Program 4 Printing L-value, Old R-Value, and R-Value

#include <stdio.h>

int a = 0;

int main(){

printf(" L-Value: %p\n", &a);

printf(" Old R-value: %d\n", a);

a = 5;

printf(" R-Value: %d\n", a);

return 0;

}

/*

L-Value: 0x80496a8

Old R-value: 0

R-Value: 5

*/

Optimizing a Read Barrier

One way to prevent read barriers from interfering with DSP loops, is to use
temporary local variables to prevent pointers from being accessed inside a
DSP loop. Program 5 shows an example of such code transformation.

However, this optimization contributes extra complexity, and it can be
hard to analyze code to locate DSP loops correctly. And for arrays of point-
ers, pointers to pointers, and so forth, the optimization becomes increasingly

18 Introduction

difficult to apply.12

Program 5 A Sine Oscillator DSP loop

// Original version:

void tone_player(float **samples,int num_samples, tone_t *tone){

int i;

for(i = 0 ; i < num_samples ; i++){

float sample = tone->volume * sin(tone->phase);

samples[0][i] = sample;

samples[1][i] = sample;

tone->phase += tone->phase_inc;

}

}

// Same function, but transformed to minimize read barrier impact:

void tone_player(float **samples,int num_samples, tone_t *tone){

int i;

double tone_volume = tone->volume;

double tone_phase = tone->phase;

double tone_phase_inc = tone->phase_inc;

float *samples0 = samples[0];

float *samples1 = samples[1];

for(i = 0 ; i < num_samples ; i++){

float sample = tone_volume * sin(tone_phase);

samples0[i] = sample;

samples1[i] = sample;

tone_phase += tone_phase_inc;

}

tone->phase = tone_phase;

}

1.5 Conservative

A conservative garbage collector considers all values in the heap and the roots
as potentially being a pointer [BW88]. The advantage is that the mutator
doesn’t have to specify exactly where pointers are placed. This means that

12Even for program 5, which was manually transformed to lower read barrier impact, it
was impossible to remove the sample arrays samples0 and samples1 from the DSP loop.

1.5 Conservative 19

if the collector finds a value that could be a pointer, it takes no chance, and
behaves as if it is a pointer. Hence the word conservative.

A number of efficient language implementations, such as Stalin Scheme,
Bigloo Scheme, D, and Mono, uses the conservative Boehm-Demers-Weiser
garbage collector for C and C++ [Boe].13 (BDW-GC)

Since DSP operations require much processing power, it is important
to be able to use efficient languages. And since conservative collectors are
simple, it is generally much easier to replace a conservative garbage collector
in a language implementation, than replacing other types of collectors.

There are two issues with conservative collectors running in realtime:

1. Fragmentation in the memory heap can cause programs to run out of
memory prematurely. Since the garbage collector can not know whether
a value is a pointer or not, it can not overwrite pointers either, which
would have been necessary in order to move objects in memory, and
avoid fragmentation.

2. Memory leakage caused by; 1. Values in memory misinterpreted as
pointers (false pointers), and; 2. Pointers which are not used anymore,
but visible to the collector.

False pointers should not be a problem on machines with 32 bit or higher
address space, but pointers which are not used anymore can be. One example
is a program that removes the first element from a singly-linked list, but
leaves the next pointer in the element uncleared. If the list becomes garbage
while the removed element is still alive, the rest of the list is still traceable
because of that next pointer. Rafkind et al. have reported that the PLT
Scheme implementation sometimes ran out of memory after a few hours,
before they switched to precise garbage collection [RWRF09].14 However, a
large program such as PLT Scheme is likely to use magnitudes more memory

13These language implementations have been among the fastest at “The Computer Lan-
guage Benchmarks Game”. (http://shootout.alioth.debian.org/.) However, Stalin
Scheme, Bigloo Scheme and D are not listed anymore.

A few simple benchmarks for Stalin have been performed in [Gra06]. In these bench-
marks, Stalin performed approximately similar to C programs compiled with GCC 4.02.
Stalin also performed significantly faster than SML (MLton 20041109) and Haskell (ghc
6.4.1)

14“Precise” is here the opposite of “conservative”. Rafkind et al. have created a garbage
collector that transform the source code of a C program so that it keeps directly track
of when memory becomes unavailable. The collector seems to be an automatic reference
counting collector. This type of collector can actually work in uncooperative environments
(that’s what it was made for), but the resulting code after transformation looks verbose
and might not be suitable for efficient audio processing.

20 Introduction

than the kind of instruments we looked at earlier in this chapter, and therefore
more likely to experience problems. Rafkind et al. writes further that the
conservative collector “seemed to work well enough” while DrScheme (PLT’s
programming environment) was a smaller program. Apparently, threading
was one of the main causes for the memory leaks since thread objects link to
each other and stores stacks and registers information. (Memory usage and
leakages in conservative garbage collectors are further discussions in [Boe02]).

Fragmentation has been analyzed in several types of programs by John-
stone and Wilson. Johnstone and Wilson concluded [JW99] by saying that
“the fragmentation problem is really a problem of poor allocator implemen-
tations, and that for these programs well-known policies suffer from almost
no true fragmentation.” Bacon, Cheng, and Rajan believe the measure-
ments of Johnstone and Wilson “do not apply to long-running systems like
continuous-loop embedded devices, PDAs, or web servers.” [BCR03]. For
our usage, interactive audio, where the user has rehearsed and learned the
behavor of a system, surprises can be avoided by giving a warning when a
program risks running out of memory. This is possible if the memory alloca-
tor has predictable or reasonably bounded fragmentation.

1.6 Snapshot-at-the-Beginning

This section presents a garbage collector that; 1. Has an upper bound on
execution time, and; 2. Can be made conservative.

If we use hardware to track changes in memory, we can create a realtime
collector without having to insert read or write barriers into the source code.

One example is a concurrent collector which uses the virtual memory
system to function as a write barrier. This type of collector uses a technique
called copy-on-write to make a snapshot of the heap15 [Wil92, 20]. A snapshot
is in this case a virtual consistent state of the heap. Instead of physically
copying memory to create a snapshot, copy-on-write creates a new set of
virtual memory pages which maps back to the memory. Only when the
mutator writes to new parts of the heap, memory will be copied physically.

15In Unix and Unix compatible operating systems [Uni97], a write-barrier based on using
copy-on-write can be implemented using fork(). fork() requires all memory to be copied
to the new process, and it usually uses copy-on-write to do so. Using copy-on-write for
fork() both reduces the time to fork, and the needed amount of physical memory.

When the garbage collector finds unreferenced memory in the child process, pointers to
free memory blocks can be sent to the parent via an IPC mechanism. A garbage collector
working like this is described by Rodriguez-Rivera and Vincent F. Russo in [RRR97].

Another collector using copy-on-write is [AEL88], which uses copy-on-write in the im-
plementation of a concurrent copying collector.

1.7 Chapter Summary 21

In other words, copy-on-write works as a write barrier that writes the Old
R-Value into the snapshot, using the L-Value to find write position.

When we have a snapshot like this, the collector can work freely in parallel
without disrupting audio processing.

Although the code becomes simpler with a write barrier implemented in
hardware, the amount of time spent by the virtual memory system will vary.
In some blocks, nothing could be copied, while in other blocks, the entire
heap could be copied. And whenever the virtual memory has to copy a page,
the mutator has to wait until the copying of the page is complete. Thus,
this kind of collector can cause glitches since there is no lower-bound, only
an upper-bound.

Additionally, unforeseen variations and slow-downs in execution can hap-
pen depending on how the operating system handles exceptions raised by the
memory management unit.

1.7 Chapter Summary

This chapter has described features of realtime audio processing and problems
when making a garbage collector for realtime audio processing. The chapter
ended by describing a type of garbage collector that could almost be made
to work for realtime audio processing both in terms of performance, ease of
use, and reliability.

22 Introduction

1.8 Definition of Terms

Atomic memory
Memory not containing pointers to other allocated memory blocks.

Atomic operation
An operation which completes before another CPU can alter the result
in the meantime.

The most common atomic CPU operation is assigning values to memory
locations. For instance, the following code works atomically on most
types of CPUs: “a=5”, where the number of bits in a is equal to the
number of bits used by the CPU. Right after this operation is finished,
a will always have the value 5, and not a combination of 5 and some
other value which might have been written to a at the same time.

Another common atomic operation is the Compare and Swap instruc-
tion (CAS). CAS(L-Value,a,b) will write b to the L-Value if a is equal
to the Old R-value. CAS is commonly used to atomically increment
or decrement an integer by running a CAS instruction in loop until a
write was successfully performed, but it can also be used to shade the
color of a memory object in a parallel garbage collector.

Collector
Part of a program that collects garbage (i.e. the garbage collector).

Conservative garbage collector
A collector that does not know exactly where pointers are placed in
memory. Therefore it must treat all values in the heap and the roots
as potentially being pointers.

Copying garbage collector
A collector that copies memory to new positions. Usually in order to
avoid fragmentation.

Block
Amount of sound data processed between soundcard interrupts. Com-
mon size is between 32 and 4096 frames.

Frame
Smallest time unit when processing samples:

• A block usually consists of between 32 and 4096 frames.

• A soundcard commonly plays 44100 or 4800 frames per second.

1.8 Definition of Terms 23

• A soundcard plays n number of samples per frame, where n is the
number of sound channels.

Mutator
Part of a program that writes to the heap, uses and allocates memory,
and runs the normal part of a program.

Non-moving garbage collector
A garbage collector that will not move memory to new positions. The
opposite of a copying garbage collector.

Roots
Initial data a tracing collector starts working from. Typical roots are
the program stack, CPU registers, and global variables.

Glitch
What is heard when sound data are not produced fast enough.

L-value
In the assignment a = b, the address of a is the L-Value.

Old R-value
In the assignment a = b, the value of a before the assignment is the
Old R-Value.

R-value
In the assignment a = b, b is the R-Value.

Snapshot
A snapshot is a copy of the heap, taken at one exact point in time.

Samplerate
Number of frames processed per second by the soundcard. Common
values are 44100 and 48000.

Uncooperative environment
The term used by Hans-Juergen Boehm and Mark Weiser in [BW88]
to denote the environment a common C program runs in. See also
conservative garbage collector.

24 Introduction

1.9 Document Overview

Chapter 1 introduced garbage collectors and realtime audio processing, in-
cluding problems that can occur when combining them.

Chapter 2 gives a brief history of garbage collection.

Chapter 3 introduces software which are used by programs in this thesis.

Chapter 4 describes semantics and syntax of programming code in this
thesis.

Chapter 5 describes the first garbage collector.

Chapter 6 shows a simple implementation of the first garbage collector.

Chapter 7 introduces a minimal memory allocator and analyzes fragmen-
tation.

Chapter 8 extends the implementation of the first collector to support more
than one heap, and improves it so that several collectors can run si-
multaneously without risking unpredictable performance.

Chapter 9 extends the first collector to run faster and more predictably.

Chapter 10 runs several tests to find snapshot performance under different
conditions, and uses data from these tests to improve the first garbage
collector.

Chapter 11 compares the first garbage collector with a conservative mark-
and-sweep collector.

Chapter 12 describes the second garbage collector.

Chapter 13 concludes the thesis and lists achievements and future work.

Appendix A contains source codes. The benchmark program and the pro-
grams to test snapshot performance are included here.

Appendix B lists all benchmark data and shows the remaining figures gen-
erated by the snapshot performance tests.

In addition, two papers are applied at the end the document. The first
paper is from the International Computer Music Conference 2009, which
contains some of the same material as in this thesis, but less clearly. The
second paper is from the Linux Audio Conference 2010, and shows practical

1.9 Document Overview 25

usage for the first garbage collector when used in audio programs. The
second paper also documents better how program 2 works, and how the
MIDI synthesizer in appendix A.1 works.

26 Brief History of Garbage Collection

2
Brief History of Garbage Collection

This chapter gives a brief history of garbage collectors from 1960 to 2010.
An emphasis is given to realtime collectors.

The summary is far from complete. Most notable is the omission of
reference counting collectors created after 1960, such as [Bak94, BR01, BM03,
LP06].

1960: The Mark-and-Sweep Collector

Garbage collection was first described by John McCarthy in [McC60].

The described method, later commonly known as mark-and-sweep, had
two phases. In the first phase, the collector went recursively through the
reachable memory marking all elements by setting a sign. The second phase
iterated over all allocated elements and inserted non-signed elements into a
list of free elements.

1960: Reference Counting

McCartney’s method had one problem. Garbage collection could pause the
execution of a program for very long periods.

George E. Collins’ solution to this was to include a counter with each
memory object. This counter was increased by one when a reference was
made to it. And similarly, the counter was decreased by one if a reference
was deleted. This made it possible to insert objects into the free-list at the
exact moment they became garbage [Col60].

27

1970: Semispace Collector

Robert R. Fenichel and Jerome C. Yochelson described in 1969 a garbage
collector which used two “semispaces” [FY69]. The heap was divided into
two areas of memory, known as from-space and to-space. Only from-space
was used by the mutator.

When from-space became full, the garbage collector moved all live mem-
ory from from-space into to-space and updated pointers to the new positions.
When finished, only garbage would be left in from-space. The last step was
to switch the position of the from-space and to-space (known as flipping).

C.J. Cheney described an improved, but still simple, non-recursive semis-
pace collector in 1970 [Che70], and Marvin Minsky described a similar col-
lector already in 1963 [Min63]. However, Minsky used an external disk as
intermediate storage [Wil92].

One advantage of this method compared to mark-and-sweep is that it’s
simple to allocate objects of different sizes. If from-space and to-space are
continuous blocks of memory, allocating a new block is just increasing a
pointer, and returning the old position. In non-moving collectors, such as a
mark-and-sweep, it is necessary to search around in memory in order to find
a fitting area of memory which is large enough in order to achieve lowest
possible fragmentation. Unpredictable fragmentation is also avoided in a
semispace collector since the collector always uses twice as much memory.

1975-1978: Concurrent Collectors with Short Pauses

Between 1975 and 1978, a series of concurrent collectors were described.

Guy L. Steele Jr. published the first paper in 1975 named “Multiprocess-
ing Compactifying Garbage Collection” [Ste75]. A write barrier was used to
store the Old R-Value into a “gc stack”. Freshly allocated objects were also
pushed into this gc stack. The collector popped and pushed objects off the gc
stack while marking objects. When the gc stack became empty, memory was
compacted, and unreferenced memory freed. Both semaphores and spinlocks
(called munch) were used to synchronize the collector and the mutator. A
read barrier was used to redirect newly compacted memory by forwarding to
another memory position if the pointer was a forwarding pointer (the collec-
tor used an extended type of pointer to distinguish directly pointing pointers
from forward pointing pointers).

Another influential paper was published in 1978 by Dijkstra, Lamport,
Leslie, Martin, Scholten, and Steffens. This was the first paper to use the
terms mutator and collector. The paper was also the first to give objects
different “colors” depending on how far they were in the collection process.

28 Brief History of Garbage Collection

The technique, later known as tricolor marking [Wil92, 18], divides objects
into white, gray and black. A white object is an object that has not yet
been traced. A gray object is an object which has been traced, but not its
descendants. A black object is an object where both the object itself and its
descendants have been traced. The tricolor marking is used for bookkeeping
so that garbage collection can be divided into smaller operations. When there
are no more gray objects, the remaining white objects are garbage. The write
barrier in Dijkstra et al.’s collector grayed (i.e. made sure an object became
gray in case it was white) the R-Value to avoid losing references in case all
objects pointing to the L-Value had already been traced.

A short overview of concurrent garbage collectors from this period is
found in [Bak78].

1978: Baker’s Incremental Realtime Copying Collector

Henry G. Baker described in 1978 a realtime garbage collector running on
uniprocessor computers [Bak78]. This collector was a semispace collector,
but instead of moving all objects and collecting all garbage in one operation,
the job was divided into many smaller operations.

A read barrier moved objects into to-space, and left a forwarding pointer
in the old position. When memory was allocated (using “CONS”), a certain
amount of memory was traced (and copied) using to-space and roots as start-
ing point. Memory was allocated from the top of to-space, while live objects
were copied into the bottom of to-space. A pointer was used to track both
positions. When the two pointers met, from-space and to-space were flipped.
By making sure that “CONS” traced enough memory, all live memory would
be moved into to-space before flipping.

1983: Generational Garbage Collector

Henry Lieberman and Carl Hewitt made a new garbage collector in 1983
based on the hypothesis that newly allocated memory became garbage faster
than older memory [LH83].

Although worst-case performance for a generational collector is equal to
a mark-and-sweep collector, long pauses generally happens so seldom that it
can be used for interactive programs.

1984: A Cheap Read Barrier for Baker’s Collector

Rodney A. Brooks modified Baker’s incremental garbage collector from 1978
so that more work was done by the write barrier than the read barrier [Bro84].
In order for the mutator to get hold of objects in to-space, the collector used

29

a forwarding pointer as read barrier. Since all pointers in the system were
forwarding pointers, the read barrier had no branching and was very efficient.

1987: Snapshot-at-the-Beginning Collectors

Snapshot-at-the-beginning collectors creates a virtual consistent state of the
heap in order to collect garbage concurrently or incrementally. A write barrier
often stores the Old R-Value, or mark the contents of the Old R-Value.

Taichi Yuasa published a paper in 1990, where the Old R-Value was
pushed into a stack so that it could be marked later [Wil92, 20].

Another type of snapshot-at-the-beginning collector uses the virtual mem-
ory system to automatically copy parts of the heap which are modified by
the mutator, (apparently) first described by Abrahamson and Patel in 1987
[Wil92, 20]. This type of collector is also described in section 1.6.

1988: Conservative Collector

Hans-Juergen Boehm and Mark Weiser described in 1988 a mark-and-sweep
collector for C and C++ [BW88]. This collector could be used in already
existing programs just by redirecting malloc and calloc to their respective al-
ternatives, and using a dummy macro or an empty function for free. In order
to make this work, it was necessary for mark to scan memory conservatively,
meaning that if a value in memory looked like a pointer, it also had to be
treated as a pointer.

1992: The Treadmill Collector

Henry G. Baker described in 1992 a non-moving version of his realtime col-
lector from 1978. Instead of moving the memory itself, this collector only
moved pointers to memory [Bak92].

1992: Realtime Replicating Collector

Scott Nettles and James O’Toole described in 1993 a replicating garbage col-
lector capable of realtime operation [NO93]. A replicating garbage collector is
an incremental copying collector which does not modify from-space. A write
barrier ensures that changes in from-space are also applied to their copies in
to-space. Before flipping, pointers in the roots are updated to point to the
new positions in to-space. Since from-space is not modified, it is tempting
to implement a concurrent replicating collector, which Nettles and O’Toole
also did [ON94].

30 Brief History of Garbage Collection

1993: The Wilson-Johnstone collector

Paul R. Wilson and Mark S. Johnstone described in 1993 another non-moving
incremental realtime collector [WJ93]. This collector had no read barrier, and
it was not concurrent. Tricolor marking was used to divide garbage collection
into many smaller operations.

The collector works like this: When a new collection cycle starts, all
objects are white, and the root set is marked gray. A bit of memory is traced
each time the mutator allocates memory. Similar to Dijkstra et. al’s collector,
a write barrier is used to gray the R-Value to ensure it won’t disappear, in
case all references to the L-Value had already been traced. When there are no
more gray objects, the remaining white objects can be recycled. Since there
is no read barrier, and the amount of time spent collecting garbage depends
on the amount of requested memory (allocating 5000 bytes takes longer time
than allocating 500 bytes), this collector is likely to perform quite predictably
and with short pause times.

2005: The Metronome Collector

David F. Bacon, Perry Cheng, and V.T. Rajan described in 2003 a real-
time incremental garbage collector which used a scheduler to ensure that
the garbage collector only spends a certain amount of time within specified
intervals [BCR03]. To avoid fragmentation, memory were sometimes moved
(“mostly non-copying”). A simple forward-pointer read barrier (similar to
Brooks’ read barrier from 1984), was used in order to support moving mem-
ory.

2001-2010: Recent Concurrent Realtime Collectors

Richard L. Hudson and J. Eliot B. Moss described in 2001 a copying collec-
tor which minimized pause times by avoiding threads to synchronize when
memory is moved to new positions [HM01].

Filip Pizlo, Daniel Frampton, Erez Petrank and Bjarne Steensgaard
described in 2007 a realtime mark-and-sweep collector which compacted
memory without requiring any locks (the STOPLESS collector) [PFPS07].
Atomic operations were used instead of locks. The year after, Pizlo, Petrank
and Steensgaard presented two variants of the same collectors, each having
different characteristics [PPS08].

Fridtjof Siebert described in 2010 a realtime collector which was both
parallel and concurrent, meaning that several parallel collector threads ran
concurrently with the mutator [Sie10]. A very simple write barrier was used
to shade objects, and atomic instructions were used to protect objects to

31

avoid coarse-grained locks. Benchmarks from [Sie10] seemed to indicate that
the collector scaled very well with the number of CPUs.

32 Software

3
Software

3.1 Stalin Scheme

Stalin Scheme [Sis] is an R4RS Scheme compiler [CR91] written by Jeffrey
Mark Siskind.

The Stalin compiler applies whole-program optimizations and other op-
timizations to produce efficient code. According to the documentation, the
aim of the compiler is to “generate efficient executable images either for
application delivery or for production research runs.”

All the realtime Scheme examples in this thesis, including the benchmark
program in appendix A.1, are compiled with the Stalin Scheme compiler.

3.2 Rollendurchmesserzeitsammler

The implementation of the first garbage collector is called Rollen-
durchmesserzeitsammler.

The source code of Rollendurchmesserzeitsammler is available from this
world wide web address:
http://users.notam02.no/~kjetism/rollendurchmesserzeitsammler/

Rollendurchmesserzeitsammler is made to replace the BDW-GC collector
[Boe] in existing language implementations such as Stalin Scheme.

3.3 TLSF

The “Two-Level Segregate Fit” allocator (TLSF) is a memory allocator made
by Miguel Masmano, Ismael Ripoll & Alfons Crespo [MRCR04]. TLSF has

3.4 SND and SND-RT 33

constant low allocation time, and it seems to have low fragmentation. Rollen-
durchmesserzeitsammler can be configured to use TLSF for allocating mem-
ory.

Allocation in TLSF works by looking up in a two-dimensional array of
cells to find a quite fitted memory block to allocate from. Each cell holds a list
of memory blocks. Since two levels of bitmaps are updated to denote which
of the cells that have memory available (the second level more fine-grained
than the first), finding the most fitting list is only a matter of scanning
two bitmaps, an operation which can be performed in O(1). If the found
memory block is larger than the requested size (at least over a certain limit),
the remaining memory is inserted back to the heap. When a memory block
is freed in TLSF, it is merged with memory blocks placed before and after
in memory (if possible), before the block is inserted back to the heap.

TLSF achieves low fragmentation since the large number of cells makes
it possible to find a quite fitting memory block to allocate from.

3.4 SND and SND-RT

SND is a sound editor and a non-realtime programming environment for
sound. SND has CLM built in, which is a sound synthesis package [Sch94].
Both SND and CLM are written by Bill Schottstaedt.

SND-RT is a realtime extension for SND. SND-RT is an experimental au-
dio programming system which uses Stalin for producing realtime audio code
and Rollendurchmesserzeitsammler for collecting garbage. The benchmarks
programs in this thesis runs inside SND-RT. Similar to SND, SND-RT can
also use CLM for sound synthesis.

34 Syntax and Semantics

4
Syntax and Semantics

All code presented in this thesis (except for the pseudocode in chapter 5 and
chapter 12) are semantically equivalent to C. (At least most of the time.)
The syntax is inspired by Python.

Albeit this chapter does not contain formal syntax and semantics, the
code in later chapters should be simple enough so that no semantic misun-
derstandings should appear.

The main syntactic change from C is that indentation and the colon sign
are used instead of { and }, and that all semicolons have been removed.
Similarly, some unnecessary parenthesis required by while, if , and struct

have been removed as well.

Additional differences from real code:

• Pseudocode appear as plain text without extra syntax. An example:
collect garbage

• Error checking has been left out.

• Smaller optimizations are left out for clarity. (Such as modifying an
existing list instead of building up a new one from the ground.)

Types

Although C is an explicitly typed language, almost all type declarations have
been removed. All types should be obvious from their names and usage alone.
Hopefully, the code becomes simpler to read when redundant information has
been removed.

35

Accessing Attributes

Dot (’.’) is used as infix operator to access attributes: heap_element.next.
We also ignore that there is a difference in C between heap_element.next

and heap_element->next. There should be no misunderstandings on this
matter when reading the code.

Syntax for Single Linked Lists

Single linked lists is the most used data structure.

• The function put inserts an element into the start of a single linked list.
In C, put could be defined like this:

#define put(a,b) do{a->next=b;b=a;}while(0)

• pop pops out the first element of a list and returns it. Using the GCC
C compiler, pop could be defined like this:

#define pop(b) ({typeof(b) _temp=b;b=b->next;_temp;})

• foreach iterates over all elements in a linked list. In a C implementa-
tion with even more extended macro capabilities than GCC, foreach

could be defined like this:

#define foreach(a ‘in‘ b ...) \\
for(a=b;a!=NULL;a=a->next){...}

• {} is the empty list. In C, the value for {} would be NULL.

wait and signal

The functions wait and signal are extensively used in the code. These are
operations on semaphores, where the semaphore value is increased when call-
ing signal and decreased when calling wait. When wait is called with a value
of 0, wait will block until someone else calls signal on the semaphore.1

is waiting

is waiting is used to check if a thread is currently waiting for the semaphore.
Since the semaphore can be incremented right before someone starts waiting,
it is not enough to check the semaphore value. In the code presented in this
thesis, is waiting is supported by extending semaphores like this:

1At least as long as the semaphore value is not negative.

36 Syntax and Semantics

struct mysemaphore:

semaphore

boolean is_waiting

signal(mysemaphore):

mysemaphore.is_waiting=false

sys_sem_inc(mysemaphore.semaphore)

wait(mysemaphore):

mysemaphore.is_waiting=true

sys_sem_dec(mysemaphore.semaphore)

mysemaphore.is_waiting=false

is_waiting(mysemaphore):

return mysemaphore.is_waiting

is ready

is ready checks whether the semaphore value is higher than 0 (i.e. not wait-
ing), and can be implemented like this:

is_ready(mysemaphore):

return sys_sem_val(mysemaphore.semaphore) > 0

37

5
The First Garbage Collector

This chapter describes the first garbage collector. Based on the arguments
in chapter 1, and the problems which were described there, we set up the
following list of wishes for the collector:

• Should not use read barriers.

• Write barriers must only be used for writing pointers.

• Should work in uncooperative environments [BW88] in order to easily
support efficient languages. This implies:

– Memory can’t be moved.

– Read or write barriers can’t be used.

• Predictable execution: There must be an upper bound, and lower
bound must regularly be equal to the upper bound.

• A concurrent collector. Infiltrating audio processing with garbage col-
lection can cool down the CPU cache.

5.1 Creating a snapshot

In section 1.6, we described a concurrent garbage collector that could work
in uncooperative environments. The collector also had an upper bound on
the amount of time for the mutator to pause. The main problem was that it
had no lower bound and could block audio processing for a variable amount
of time between each audio block.

38 The First Garbage Collector

We propose a simple adjustment to the collector described in section 1.6.
Instead of using copy-on-write to make a snapshot, we copy the heap manu-
ally. Copying the heap manually is both simple and has O(1) performance.
And for many cases, the amount of memory to copy should not be a problem:

1. Snapshots are not necessary for pointerless memory (atomic memory).
Example of such memory are sample buffers and FFT data. This is
were most memory is spent.

2. Even larger audio programs don’t require much pointer-containing
memory. In section 1.2, we saw that most of the instruments used
less than 9 objects inside the DSP loops. In the DTMF synthesizer
implemented in program 2, about 7 objects were required per playing
tone. If we play 16 tones simultaneously, the number of allocated ob-
jects would be 112, and if we multiply that number with the 8 objects
used in an average SND instrument, we end up with 1008 pointers.
If each pointer takes up 4 bytes, the final amount of memory is 3584
bytes. This would be the memory usage of a small polyphonic MIDI
synthesizer.

Although this is an ideal calculation, it still indicates that the required
time to copy the heap for audio programs could be low. Even 3584
bytes multiplied by one hundred takes an almost insignificant amount
of time to copy on current personal computers compared to the dura-
tion of a common audio block (figure B.1 at page 126 shows snapshot
performance).

Another thing to keep in mind is that CPU usage is not what matters in
realtime software. As long as taking snapshots doesn’t increase the chance of
glitches, or reduces interactivity for the user, performance is acceptable. And
since multiprocessor computers seldom seems to work to its fullest potential
when processing audio, there is a higher chance for CPU time to be available
for taking snapshots.

5.2 The Basic Technique

We try to make a predictable garbage collector by taking a snapshot of the
heap (by physically copy all memory in the heap in one operation), and run
the collector in a parallel thread.

When we find garbage on a snapshot in a parallel thread, the only critical
section (where the mutator and the collector are not allowed to run simulta-
neously), is when we make the snapshot. Snapshots can be created between
processing audio blocks.

5.2 The Basic Technique 39

To avoid worst case performance to increase during execution, the size of
the heap can not increase. When the collector starts up, we allocate a fixed
size heap small enough to be fully copied within this time frame:

m − s (5.1)

where m is the duration of one audio block, and s is the time the program
uses to process all samples in that block. This heap is used for storing
pointer-containing memory.

After taking the snapshot, an independently running lower-priority thread
is signaled. The lower-priority thread finds garbage by running a mark-and-
sweep on the snapshot.

Program 6 Basic Version of the First Collector

1 mark-and-sweep thread()

2 loop forever

3 wait for mark-and-sweep semaphore

4 run mark and sweep on snapshot

5

6 audio function()

7 produce audio

8 if mark-and-sweep is waiting then

9 copy heappointers and roots to snapshot

10 if there might be garbage then

11 signal mark-and-sweep semaphore

12 endif

13 endif

Program 6 shows what has been described so far. Some comments on
program 6:

• “audio function()” on line 6 is called at regular intervals to process one
block of audio.

• The check for “if there might be garbage” on line 10 could for instance
be performed by checking the amount of allocated memory since last
collection. This check is not required for correct operation, but lowers
CPU usage.

• The mark-and-sweep thread on line 1 (our “lower-priority thread”)
should run with a lower priority than the audio thread so that it won’t

40 The First Garbage Collector

steal time from the audio function. But, this thread still needs to run
with a high enough priority to prevent GUI updates and other non-
realtime operations from delaying memory from being reclaimed.

5.3 Issues

1. By either increasing the heap size, reducing the block size, or increasing
the samplerate, the time creating snapshot

block duration
ratio is increased, and the time

available for audio processing is reduced. (Audio processing can not
run simultaneously with taking snapshot.)

2. If a program runs out of memory, and we are forced to increase the
size of the heap, the time taking snapshot will increase as well after
restarting the program.

Although the situations raised by these issues are unusual, they are not
unpredictable.

5.4 Optimizations

The following optimizations can be applied:

• Running in parallel
If instruments or applications depend on each other, for example if one
instrument produces audio which is used by a subsequent reverberation
instrument, performance can increase if the subsequent reverberation
instrument can run simultaneously with taking snapshot. This exten-
sion is implemented in program 7.

• Partial snapshots
As discussed in chapter 1, it is only necessary to take snapshot of the
complete heap (full snapshot) about once a second, or thereabout. In
between, only the used part(s) of the heap can be copied instead (partial
snapshot). Since the soundcard buffer is normally refilled somewhere
between 50-1500 times a second, this will eliminate most of the wasted
CPU. (At least as long as we don’t count taking partial snapshot as
wasted CPU.) The user will still notice when the garbage collector
spends too much time, but now only once per second, which should be
good enough.

5.4 Optimizations 41

• Avoid taking two snapshots in a row
By making sure that snapshots are never taken two blocks in a row,
spare-time will be available both after producing audio in the current
block, and before producing audio in the next. The time available for
taking snapshots is now:

2 ∗ (m − s) (5.2)

where m is the duration of one audio block, and s is the duration of
processing the samples in that block.

• Avoid taking snapshot if the audio process takes a long time
In case producing audio for any reason takes longer time than usual,
which for instance can happen if the CPU cache is cold, sound gener-
ators are allocated, or sample buffers are initialized, worst-case can be
lowered by delaying a new snapshot until the next block.

Program 7 Basic Version of the First Collector, with Parallel Snapshot

mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark and sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if mark-and-sweep is waiting then

copy heappointers and roots to snapshot

if there might be garbage then

signal mark-and-sweep semaphore

endif

signal audio function semaphore

audio function()

wait for audio function semaphore

produce audio

signal snapshot semaphore

42 The First Garbage Collector

5.5 Synchronizing Garbage Collectors

If more than one program runs this garbage collector simultaneously, more
than one snapshot could also be taken simultaneously. Since personal com-
puters only have one memory bus between the CPUs and the main memory,
performance could be reduced even if snapshots are taken on different CPUs.

5.6 Memory Overhead

The size of the snapshot is equal to the heap. When running only one
instrument, the memory usage will double. But when several instruments
use the same garbage collector, they can share snapshot. The memory usage
is

atomic heapsize + heapsize ∗
n + 1

n
(5.3)

where n is the number of instruments.

5.7 Sharing Data between Instruments

Making snapshot overhead lighter by dividing data into separate smaller
heaps makes it difficult to share data between instruments. Since we don’t
want to take snapshot of all heaps simultaneously, a garbage collector can
not safely trace memory in other heaps.

To avoid freeing objects used by other heaps, a small reference counting
collector can be implemented to keep track of references to objects used
across instruments. A global register can contain a list of names, addresses,
and number of references. In case an instrument is deleted while storing
objects referenced by other instruments, deletions of referenced heaps can be
delayed. (It may also be possible to create algorithms which only frees parts
of memory not used by other instruments.)

For simplicity, we can limit the type of objects which can be accessed
across instruments, to globally scoped variables. With this limitation en-
forced, a further limitation is to only detect at compile time when such
objects are referenced from other instruments, so that the amount of code
required to updates the register can be minimized.

In case the deletion of heaps sometimes has to be delayed, this scheme
causes larger than usual memory usage, but since it’s not unpredictable for
the user to know the amount of used memory, and the delay doesn’t cause
higher snapshot time, the scheme does not break realtime performance.

5.7 Sharing Data between Instruments 43

Program 8 Optimized Version of the First Collector

mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark-and-sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if at least one second since last full snapshot then

copy roots to snapshot

copy full heappointers to snapshot

if there might be garbage then

signal mark-and-sweep

else if there might be garbage then

copy roots to snapshot

copy partial heappointers to snapshot

signal mark-and-sweep

else

do nothing

endif

signal audio function

audio function()

wait for audio function semaphore

produce audio

if mark-and-sweep is waiting, and

no snapshot was performed last time, and

it didn’t take a long time to produce audio

then

signal snapshot

else

signal audio function

endif

44 Basic Implementation

6
Basic Implementation

In chapter 5, our garbage collector was described with words and pseudocode.
In this chapter we go one step further, and show an almost finished imple-
mentation.

The implementation shown here is basic. Later chapters improves the
collector by building further on the code in this chapter.

6.1 Structures 45

6.1 Structures

/*

* Used when transporting information about allocated memory

* between collector and mutator.

*/

struct meminfo_minimal:

start

size

/*

* Used by mark-and-sweep.

* Defines the list element in the list of allocated memory blocks.

*/

struct meminfo:

next

start

end

marked

/*

* The main heap structure

*

* mheap: Dynamic memory heap

* audio_function_can_run: A semaphore

* audio_function: The function processing audio

* all_meminfos: List of allocated memory blocks

* ringbuffer: Holds meminfo_minimal objects

*/

struct heap:

mheap

audio_function_can_run

audio_function

all_meminfos

ringbuffer

46 Basic Implementation

6.2 Creating a new Heap

1 gc_create_heap(audio_function):

2 heap = sys_alloc(sizeof(struct heap))

3 heap.mheap = create_mheap(heap_size)

4 heap.audio_function_can_run = SEMAPHORE_INIT(1)

5 heap.audio_function = audio_function

6 heap.all_meminfos = {}
7 heap.ringbuffer = create_ringbuffer(

8 MAX_RB_ELEMENTS

9 * sizeof(struct meminfo_minimal)

10)

11 return heap

The function create mheap on line 3 creates a new heap of dynamic
memory. create mheap is described in section 7.1.

6.3 Global Variables

heap_size = 0

roots_start = NULL

roots_end = NULL

current_heap = NULL

snapshot_mem = NULL

meminfo_pool = NULL

markandsweep_ready = SEMAPHORE_INIT(0)

snapshot_ready = SEMAPHORE_INIT(0)

gc_can_run = false

6.4 Initialization 47

6.4 Initialization

gc_init(new_heap_size):

heap_size = new_heap_size

roots_start = sys_alloc(MAX_ROOTS_SIZE)

roots_end = roots_start

snapshot_mem = sys_alloc(heap_size)

meminfo_pool = init_pool(sizeof(struct meminfo))

create_thread(REALTIME_PRIORITY,gc_thread)

create_thread(REALTIME_PRIORITY,markandsweep_thread)

6.5 Allocation

1 // Used by mutator

2

3 gc_alloc(heap,size):

4 mem = alloc(heap.mheap, size)

5

6 /* Tell garbage collector about new memory. */

7 ringbuffer_write(

8 heap.ringbuffer,

9 [mem,size]

10)

11

12 return mem

13

The function alloc on line 4 allocates memory from the memory heap.
alloc is described in section 7.1.

Since increased heap size also means increased time taking snapshot, we
do not store size and a link to the previous allocated memory block before
the returned value. Instead, a ringbuffer is used to transport this information
to the garbage collector.

48 Basic Implementation

6.6 Running the DSP Block Function

(including example of usage)

1 // Used by mutator

2

3 run_dsp_block_function(heap):

4

5 // In case the collector is not finished taking snapshot

6 // since last time, we have to wait for it.

7 wait(heap.audio_function_can_run)

8

9 // Run the audio function

10 heap.audio_function(heap)

11

12 // In case the collector is ready and the collector did not

13 // run last time, a new collection is started:

14 if is_waiting(snapshot_ready)

15 && is_waiting(markandsweep_ready)

16 && gc_can_run==true:

17 gc_can_run = false

18 current_heap = heap

19 signal(snapshot_ready)

20 else:

21 gc_can_run = true

22 signal(heap.audio_function_can_run)

23

24 an_audio_function(heap):

25 <create sound>

26

27 main():

28 gc_init(1024*1024) // Heap size

29 heap = gc_create_heap(an_audio_function)

30 start_audio_thread(run_dsp_block_function,heap)

31 sleep(...)

gc can run is set to false after initiating a new collection to prevent two
snapshots from being performed in a row.

6.7 The Snapshot Thread 49

6.7 The Snapshot Thread

// Used by collector

gc_thread():

while true:

wait(snapshot_ready)

heap=current_heap

reset_roots()

take_root_snapshot(global_vars_start, global_vars_end)

take_heap_snapshot(heap)

num_new_allocations =
ringbuffer read size(heap.ringbuffer)

sizeof(struct meminfo minimal)

signal(heap.audio_function_can_run)

if num_new_allocations > 0:

signal(mark_and_sweep_ready)

6.8 The Mark-and-Sweep Thread

// Used by collector

mark_and_sweep_thread():

while true:

wait(mark_and_sweep_ready)

get_new_meminfos(heap,num_new_allocations)

run_mark(roots_start,roots_end)

run_sweep()

50 Basic Implementation

6.9 Get Memory Info

The function get new meminfos is called from the mark-and-sweep thread
before starting a new collection. get new meminfos transports newly created
memory information from the ringbuffer to the garbage collector’s internal
list of meminfos.

// Used by collector

get_new_meminfos(heap,num_new_allocations):

for i = 0 to num_new_allocations:

from = ringbuffer_read(

heap.ringbuffer,

sizeof(struct meminfo_minimal)

)

to = get_pool(meminfo_pool)

to.start = from.start

to.end = from.start+from.size

to.marked = false

put(to, heap.all_meminfos)

6.10 Taking Snapshot 51

6.10 Taking Snapshot

To get a snapshot of the complete environment, both the heap and the roots
must be copied.

Heap Snapshot

// Used by collector

take_heap_snapshot(heap):

for i = 0 to heap_size:

snapshot_mem[i] = heap.mheap[i]

Roots Snapshot

// Used by collector

reset_roots():

roots_end = roots_start

take_root_snapshot(start,end):

size = end - start

for i = 0 to size:

roots_end[i] = start[i]

roots_end += size

52 Basic Implementation

6.11 Mark

mark traverses all memory recursively and marks all visited blocks by setting
the marked flag to true.

1 // Used by collector

2

3 get_snapshot_mempos(heap_mempos):

4 offset = snapshot_mem - current_heap.mheap

5 return heap_mempos + offset

6

7 find_mem(address):

8 foreach mem in current_heap.all_meminfos:

9 if address>=mem.start && address<mem.end:

10 return mem

11 return NULL

12

13 run_mark(start,end):

14 for mempos = start to end:

15 address = *mempos

16 if address >= current_heap.mheap

17 && address < current_heap.mheap.freemem:

18 mem = find_mem(address)

19 if mem!=NULL && mem.marked==false:

20 mem.marked = true

21 start = get_snapshot_mempos(mem.start)

22 end = get_snapshot_mempos(mem.end)

23 run_mark(start,end)

24

The variable current heap.mheap.freemem on line 17 points to the current
highest possible address which may contain allocated memory. (The memory
heap structure is declared in section 7.1.)

6.12 Sweep 53

6.12 Sweep

1 // Used by collector

2

3 run_sweep():

4 survived_mem={}
5

6 foreach mem in current_heap.all_meminfos:

7 if mem.marked==true:

8 put(mem,survived_mem)

9 mem.marked=false

10 else:

11 size = mem.end-mem.start

12 for i=0 to size:

13 mem.start[i]=0

14 free(current_heap.mheap, mem.start, size)

15 put_pool(meminfo_pool,mem)

16

17 current_heap.all_meminfos=survived_mem

18

To avoid later marking memory based on expired pointers, we null out all
memory before it can be reused. (Line 12 and 13.) We null out here instead
of during allocation to make the mutator run faster.

54 The Dynamic Memory Allocator

7
The Dynamic Memory Allocator

In order to allocate memory without risking unpredictable execution time,
we need a realtime memory allocator.

The dynamic memory allocator in this chapter uses a minimal algorithm
where memory are available from a stack or from a large array of segregated
lists.1 The segregated lists are initially empty, but filled dynamically during
execution of the program. When allocating memory, the allocator first tries
to pop an element from the start of the most fitting segregated list, and if
that list is empty, the stack is used instead.

The allocator uses the simplest type of segregated free lists: One segre-
gated list for every memory size, up to a predefined point. Allocating a larger
memory block than the predefined point is impossible. Allocating from a list
containing memory blocks of a different size is also impossible.

In 1977, Norman R. Nielsen tested 35 different types of memory alloca-
tion algorithms for relatively small simulation programs. A similar looking
allocator (“Multiple Free Lists”) turned out favorable compared to the other
algorithms (such as First fit, Best-fit, and Binary Buddies [WJNB95]), both
in terms of effectiveness and memory overhead [Nie77].

For small realtime programs which run in a loop and treat the same events
over and over, no fragmentation should occur. In the other end: almost
ultimate fragmentation occurs instantly if a program allocates randomly sized
blocks.

Both allocating and releasing memory is extremely cheap. Allocation time
is even competitive with copying collectors, which only requires a pointer
increase [Che70].

In addition, the allocator has a bounded memory usage. The required

1List of memory objects of a specific size [WJNB95].

7.1 Basic Implementation 55

amount of memory is exactly:

∞∑

i=0

maxi ∗ i (7.1)

where i is the memory block size, and maxi is the highest number of simul-
taneously allocated i sized blocks.

This makes fragmentation predictable, and for some types of programs, it
becomes possible to avoid the fragmentation concerns of non-moving garbage
collectors. For instance has [BCR03] recently raised concerns about this issue.

7.1 Basic Implementation

An actual implementation must align the size up to the nearest pointer lo-
cation, and maybe return NULL or throw an error if there’s no memory
left. In addition, the number of segregated lists can be reduced by using
memory block size

pointer size
as array index. But apart from that the algorithm looks like

this:

struct mheap:
freemem
slists

struct mem:
next

create_mheap(heap_size):
mheap = sys_alloc(heap_size)
mheap.freemem = mheap + sizeof(struct mheap)
mheap.slists = sys_alloc(heap_size*sizeof(pointer))

for i=0 to heap_size:
mheap.slists[i]=NULL

for i=0 to heap_size-sizeof(struct mheap):
mheap.freemem[i]=0

return mheap

alloc(mheap,size):
if mheap.slists[size]!=NULL:

return pop(mheap.slists[size])
else:

ret = mheap.freemem
mheap.freemem+=size
return ret

free(mheap,start,size):
put(start,mheap.slists[size])

56 The Dynamic Memory Allocator

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 10 20 30 40 50 60

M
em

or
y

(b
yt

es
)

Time (seconds)

TLSF
Poolmem

Poolmem + defragmenter
Memory allocated

Figure 7.1: Fragmentation of the Pointer Heap

7.2 Fragmentation

The program in appendix A.1 has been used to test fragmentation. The same
program is also used to run benchmarks in chapter 11.

The program does not treat the same events over and over, but consists
of four parts:

00s-55s: A MIDI synthesizer playing a song. Tones are played using square
waves. The synthesizer applies autopanning and ADSR envelope for
each tone. Stereo reverb is applied as well.

05s-15s: A triangle wave grain cloud. 500 grains are played.

20s-32s: A synthesized insect swarm based on the “insect” instrument in
SND, made by Bill Schottstaedt. 400 insects are played.

40s-50s: A cloud of plucked strings based on the “pluck” instrument in SND,
also made by Bill Schottstaedt. The instrument uses the physical model
of Jaffe and Smith [JS83]. 2000 strings are plucked.

Playing four different parts, and using several types of synthesize methods,
is likely to provoke higher fragmentation.

7.2 Fragmentation 57

Figure 7.1 shows the amount of requested memory while running the
program, plus the highest allocated memory position in these three memory
allocators:

1. TLSF is the “Two-Level Segregate Fit” allocator by Miguel Masmano,
Ismael Ripoll & Alfons Crespo. TLSF was introduced in section 3.3.

2. Poolmem is the allocator described in this chapter

3. Poolmem + defragmenter is Poolmem + an attempt to lower fragmen-
tation by running a defragmenter. 2

The focus is reducing the amount of memory in the memory heap since
this reduces time taking snapshots. Therefore, other types of memory used

2The defragmenter looks like this:

label defragment:

for each slist in slists:

for each block in slist:

if block is at the top of the stack then:

remove block from slist

decrease stack

goto defragment

This defragmenter uses a lot of processing power, but it is simple to extend free in order
to defragment memory equally efficient as running the above code: If the memory block
to be freed is on top of the allocator stack, free can decrease the stack pointer instead
of inserting the block into the correct segregated list. If the memory block placed right
before it is also free, and right after the end has a pointer to the next object in the list,
the start of the block can be found by following the “prev-pointer” of the next element
in the list. (The segrated lists must be doubly linked now). And then the block can be
removed from the list, and the stack pointer decreased even further. And so on. (free does
not require O(1) performance.)

However, the increased use of memory required to implement this (one extra pointer
per block) causes more fragmentation than what is gained. At least for the program
in appendix A.1. There are also other alternatives, such as using a hash table to store
memory headers, but doing so would complicate the code and pollute the CPU cache.

Changing free to only decrease the stack pointer for the current object, like this:

free(mheap,start,size):

if start+size == mheap.freemem:

mheap.freemem = start

else:

put(start,mheap.slists[size])

...caused no significant improvement in fragmentation. In figure 7.1, the two Poolmem
graphs (with and without the extension above) only differed minimally a couple of places,
and therefore this graph was not included.

58 The Dynamic Memory Allocator

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

4 8 12 16 20 48 52 128 260 8196

N
um

be
r

of
 a

llo
ca

tio
ns

Memory block size

65880

25487 25973

645 2 16

7528

2382
2 1

Figure 7.2: Memory block size chart for pointer heap

by the allocators, such as the mheap.slists attribute, are not a part of the
fragmentation statistics shown in figure 7.1. For the same reason, the main
header of the TLSF heap (which is 3180 bytes on a 32 bit computer) is not
included in the graphs either, since it’s not necessary to take snapshot of it.

7.3 When Poolmem can not be used

Figure 7.3 shows the fragmentation of the heap not containing pointers.3 We
see that the memory is instantly becoming more and more fragmented when
the plucked strings start playing. The reason is that the physical model used
by the plucked string algorithm allocates a delay line, in which white noise is
filtered over and over. The length of the delay line decides the frequency of
the string. Since the frequency of each tone is set randomly by the benchmark
program, and 2000 tones are played in a few seconds, a large variation in size
of allocated memory blocks occurs. A previously unused pool will often be
used when a delay line is freed, and this increases fragmentation. We also
see that the defragmenter makes no significant difference in this test.

3There are two heaps. The heap not containing pointers is not necessary to take
snapshot of.

7.4 Thread Safe Implementation 59

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60

M
em

or
y

(b
yt

es
)

Time (seconds)

TLSF
Poolmem

Poolmem + defragmenter
Memory allocated

Figure 7.3: Fragmentation of the Atomic Heap

7.4 Thread Safe Implementation

Since sweep is running in a parallel thread, free and alloc can be called
simultaneously from two threads. In order to avoid locks, lock-free lists
implemented using atomic operations could be used instead of normal single-
linked lists [FOL02].

60 Several Heaps and Garbage Collectors

8
Several Heaps and Garbage Collectors

If a program runs several instruments, heap size per instrument can be re-
duced if each instrument uses its own heap. But the implementation in
chapter 6 only handled one heap.

In addition, there were no mechanism to synchronize garbage collectors
to avoid more than one snapshot to be taken at the same time. Since the
memory bus is the bottleneck when taking snapshots on personal comput-
ers, running more than one snapshot simultaneously will increase snapshot
duration, even if all snapshots are performed on separate CPUs.

8.1 More than one Heap

The simplest way to support more than one heap is to select beforehand which
heap to take garbage collection of. The simplest way to select heap is to use
the one with the most allocated memory. The following code implements
this functionality,

To avoid running garbage collection again and again on the same heap
without any memory being released, a new garbage collection is only run on
heaps which have allocated memory since last time a collection was run on
it.

8.1 More than one Heap 61

struct heap:

mheap

audio_function_can_run

audio_function

all_meminfos

ringbuffer

start_new_gc

next

run_dsp_block_function(heap):

wait(heap.audio_function_can_run)

heap.audio_function(heap)

if heap.start_new_gc==true :

heap.start_new_gc = false

current_heap = heap

signal(collector_ready)

else:

signal(heap.audio_function_can_run)

get_fullest_heap():

fullest_heap = heaps

fullest_size = fullest_heap.mheap.freemem - fullest_heap.mheap

foreach heap in heaps.next:

used_memory = heap.mheap.freemem - heap.mheap

if used_memory > fullest_size

&& ringbuffer_read_size(heap.ringbuffer) > 0:

fullest_heap = heap

fullest_size = used_memory

return fullest_heap

(code continues on next page)

62 Several Heaps and Garbage Collectors

run_dsp_block_functions(heaps) :

if is_waiting(collector_ready)

&& is_waiting(markandsweep_ready)

&& gc_can_run==true:

gc_heap = get_fullest_heap()

gc_heap.start_new_gc = true

gc_can_run = false

else:

gc_can_run = true

foreach heap in heaps:

run_dsp_block_function(heap)

main():

gc_init(1024*1024) // Heap size

heap = gc_create_heap(an_audio_function)

start_audio_thread(run_dsp_block_function,heap)

start_audio_thread(run_dsp_block_functions,heap)

sleep(...)

8.2 More than one Garbage Collector 63

8.2 More than one Garbage Collector

Two ways to avoid several snapshots to be taken simultaneously: 1. A server
selects which client is allowed to run a garbage collection in the current audio
block cycle. 2. A server does the garbage collection, and not the client.

Advantages of running garbage collection on the server:

1. Lower memory overhead: Only one snapshot buffer is needed on the
computer.

2. Only one mark-and-sweep process is run simultaneously so that less
code and memory is used, which is better for the CPU cache.

3. The garbage collector runs in a different memory environment: Making
code simpler by automatically removing any chance of false sharing
[TS08].

The main disadvantage of running the garbage collection on a server is
that it requires large amounts of shared memory. To ensure high perfor-
mance, shared memory will be required both for the snapshot, roots, and
for sending information about allocated memory back and forth. Shared
memory is often a limited resource.

Clients Run Garbage Collection on Their Own Heaps

This sections implements the first method: Clients run garbage collection
on their own heaps, but connect against a server to synchronize with other
clients to avoid several snapshots to be taken simultaneously.

The implementation lets each client run a special listening thread, which,
when asked by the server, calculates and sends back the heap usage in permil
(h) of the client’s fullest heap. And as usual; only of those heaps which has
allocated memory since its last collection.

64 Several Heaps and Garbage Collectors

gc_can_run = false

struct client:

next

queue

sync_server_thread():

clients = {}
client_pool = create_pool(sizeof struct client)

num_clients = 0

gc_can_run = false

sq = create_queue()

publish_server_queue(sq)

while true:

request=receive(sq,sizeof(request))

switch request:

case REQUEST_ADD_CLIENT:

client = get_pool(client_pool)

client.queue = receive(sq,sizeof(queue))

put(client,clients)

num_clients++

send(client.queue) // ACK

case REQUEST_REMOVE_CLIENT:

queue = receive(sq,sizeof(queue))

client = find_client(clients,queue)

clients = remove_element(client,clients)

put_pool(client,client_pool)

num_clients--

send(client.queue) // ACK

(function continues on next page)

8.2 More than one Garbage Collector 65

case REQUEST_NEW_GC_DECISION:

client_queue = receive(sq,sizeof(queue))

highest_permil = -1

fullest_clients_queue = NULL

if gc_can_run==true:

foreach client in clients:

send(client.queue,REQUEST_HEAP_INFO)

for i = 0 to num_clients:

permil = receive(sq,sizeof(int))

if permil > -1:

queue = receive(sq,sizeof(queue))

if permil > highest_permil:

if fullest_clients_queue != NULL:

send(fullest_clients_queue,false)

highest_permil = permil

fullest_clients_queue = queue

else:

send(queue,false)

if fullest_clients_queue != NULL:

send(fullest_clients_queue,true)

gc_can_run = false

else:

foreach client in clients:

send_to_client(client.queue,NO_REQUEST)

gc_can_run = true

send(client_queue) // ACK

default:

error("unknown request")

(code continues on next page)

66 Several Heaps and Garbage Collectors

server_queue = NULL

client_queue = NULL

gc_decided = false

heap_decider_thread():

while true:

request = receive_from_server(sizeof(request))

if request==REQUEST_HEAP_INFO:

if is_waiting(collector_ready):

gc_heap = find_fullest_heap()

permil = 1000 ∗ gc heap.allocated mem

heap size

send(server_queue,permil,client_queue)

if receive(client_queue,sizeof(boolean))==true:

gc_heap.start_new_gc = true

gc_decided = true

else:

gc_decided = true

send(server_queue,-1)

run_dsp_block_functions(heaps):

if gc_decided==false:

send(server_queue,REQUEST_NEW_GC_DECISION,client_queue)

receive(client_queue)

foreach heap in heaps:

run_dsp_block_function(heap)

gc_decided=false

(code continues on next page)

8.2 More than one Garbage Collector 67

sync_init():

ipc_lock()

if get_server_queue()==NULL:

create_thread(REALTIME_PRIORITY,sync_server_thread)

while get_server_queue()==NULL:

sleep()

ipc_unlock()

server_queue = get_server_queue()

client_queue = create_queue()

send(server_queue,REQUEST_ADD_CLIENT,client_queue)

create_thread(REALTIME_PRIORITY,heap_decider_thread)

gc_init(new_heap_size):

heap_size = new_heap_size

roots_start = sys_alloc(MAX_ROOTS_SIZE)

roots_end = roots_start

snapshot_mem = sys_alloc(heap_size)

meminfo_pool = init_pool(sizeof(struct meminfo))

create_thread(REALTIME_PRIORITY,gc_thread)

sync_init()

In addition, if heap size differs between clients, the server should select
the client with the largest heap to run snapshot at least once per second.

The code may also run faster by using interprocess semaphores instead of
sending messages. Another optimization is to avoid synchronization if only
one client is connected to the server.

68 Several Heaps and Garbage Collectors

Parallel Running Clients

The previous code assumed that all clients connected to the server ran in
serial. To handle parallel running clients, interprocess synchronization must
be added to the function run dsp block functions :

run_dsp_block_functions(heaps):

if gc_decided==false:

ipc_lock()

if gc_decided==false:

send(server_queue,REQUEST_NEW_GC_DECISION,client_queue)

receive(client_queue)

ipc_unlock()

foreach heap in heaps:

run_dsp_block_function(heap)

gc_decided=false

69

9
Optimizations and Realtime Adjustments

Realtime audio processing has low upper bound requirements.

9.1 Optimizing Mark

The implementation of mark in chapter 6 was inefficient and lacked some
precautions to reduce unpredictability.

Avoid Transporting Memory between CPU Caches

Sharing data between the mutator and the collector can cause data to be
transported back and forth between two CPU caches while the audio thread
is running. Not only takes transportation of data between two CPU caches
time by itself, but it’s also hard to predict when it happens.

Another related problem is false sharing. False sharing means that sepa-
rate variables placed in memory used by different threads are placed so close
to each other that they share CPU cache line [TS08]. When this happens,
memory is cached by accident, and we risk two CPUs fighting back and forth
over the same cache line data.

Unpredictable cache performance are mostly avoided by restricting fre-
quent access to objects which are used both by the mutator and the collector:

1. The ringbuffer is replaced by a “transport stack” (see Appendix A.2).
The transport stack contains two stacks. The mutator and the collector
are not allowed to access the same stack simultaneously.

2. Access to global variables and the heap object are restricted in the
collector by allocating a new memory block (called mark variables) to

70 Optimizations and Realtime Adjustments

store heap variables and global variables. This memory block is then
used exclusively by the garbage collector thread.

struct heap:

mheap

audio_function_can_run

audio_function

all_meminfos

tr_stack

start_new_gc

next

writer

meminfo_pool = NULL

struct mark_variables:

all_meminfos

num_new_allocations

heap_start

heap_end

snapshot_mem_offset

meminfo_pool

reader

(code continues on next page)

9.1 Optimizing Mark 71

gc_alloc(heap,size):

minimal = stack_write(heap.writer,sizeof(struct meminfo_minimal))

minimal.start = alloc(heap.mheap,size)

minimal.size = size

return minimal.start

get_new_meminfos(mv ,num_new_allocations):

for i = 0 to num_new_allocations

from = stack_read (

mv.reader ,

sizeof(struct meminfo_minimal)

)

to = get_pool(mv. meminfo_pool)

to.start = from.start

to.end = from.start+from.size

to.marked = false

put(to,mv. all_meminfos)

prepare_new_gc(mv, heap):

mv.all_meminfos = heap.all_meminfos

mv.heap_start = heap.mheap

mv.heap_end = heap.mheap.freemem

mv.snapshot_mem_offset = snapshot_mem - heap.mheap

tr_stack_switch(heap.tr_stack)

heap.writer = heap.tr_stack.writer

mv.reader = heap.tr_stack.reader

(code continues on next page)

72 Optimizations and Realtime Adjustments

mark_and_sweep_thread():

while true:

mv = wait(mark_and_sweep_ready)

get_new_meminfos(heap,mv. num_new_allocations)

run_mark(mv, roots_start, roots_end)

run_sweep()

gc_thread():

mv = sys_alloc(sizeof(struct mark_variables))

mv.meminfo_pool = init_pool(sizeof(struct meminfo))

while true:

wait(collector_ready)

heap = current_heap

reset_roots()

take_root_snapshot(global_vars_start, global_vars_end)

take_heap_snapshot(heap)

prepare_new_gc(mv, heap)

mv. num_new_allocations =
stack space(mv.reader)

sizeof(struct meminfo minimal)

signal(heap.audio_function_can_run)

if mv. num_new_allocations > 0:

signal(mark_and_sweep_ready , mv)

get_snapshot_mempos(mv ,heap_mempos):

return heap_mempos + mv.snapshot_mem_offset

find_mem(mv ,address):

foreach mem in mv .all_meminfos:

if address>=mem.start && address<mem.end:

return mem

return NULL

(code continues on next page)

9.1 Optimizing Mark 73

run_mark(mv ,start,end):

for mempos = start to end:

address = *mempos

if address >= mv .heap_start

&& address < mv .heap_end:

mem = find_mem(mv ,address)

if mem!=NULL && mem.marked==false:

mem.marked = true

start = get_snapshot_mempos(mv ,mem.start)

end = get_snapshot_mempos(mv ,mem.end)

run_mark(mv ,start,end)

gc_create_heap(audio_function):

heap = sys_alloc(sizeof(struct heap))

heap.mheap = create_mheap(heap_size)

heap.audio_function_can_run = SEMAPHORE_INIT(1)

heap.audio_function = audio_function

heap.all_meminfos = {}

heap.tr_stack = tr_stack_create (

MAX_RB_ELEMENTS

* sizeof(struct meminfo_minimal)

)

heap.writer = heap.tr_stack.writer

return heap

gc_init(new_heap_size):

heap_size = new_heap_size

roots_start = sys_alloc(MAX_ROOTS_SIZE)

roots_end = roots_start

snapshot_mem = sys_alloc(heap_size)

meminfo_pool = init_pool(sizeof(struct meminfo))

create_thread(REALTIME_PRIORITY,gc_thread)

create_thread(REALTIME_PRIORITY,markandsweep_thread)

74 Optimizations and Realtime Adjustments

Avoid Running Out of Transport Stack

In order to keep code clean, there was an important precaution which was
not implemented in the previous code.

The duration between each time a new garbage collection is started will
vary, and if garbage collection takes too long time while gc alloc is called
too many times, the transport stack would be full. gc alloc would then fail
since the mutator are not allowed to allocate system memory. This problem
is solved by making sure the transport stack is switched and emptied after
processing every block. Then we can guarantee an upper bound on the
number of allocations allowed to make between each block.

Optimizing find mem

The efficiency of mark was O(m ∗ n), where m is the total amount of al-
located memory, and n is the number of allocations. A significant amount
of time is likely to be spent in the find mem function, since it only has an
efficiency of O(n) and is called every time a potential pointer to the heap is
found. Three quick ways to optimize find mem are:

1. Pointers are likely to point directly to the start of allocated memory
blocks (i.e. not pointing inside objects (interior pointers)). find mem
will run faster if it can look up a hash table instead of iterating through
the list of meminfos.

2. Similarly, to avoid iterating the list of meminfos every time a potential
interior pointer is found, interior pointers are also inserted into the hash
table (when they are found). In order to remove interior pointers from
the hash table when the corresponding meminfo object is freed, the
interior pointer must also be stored somewhere in the meminfo object.
A list of interior pointers is added to each meminfo object.

3. When a false address is found (a value found during trace that points
somewhere inside the heap, but does not point to, or inside, any live
memory object), this false address is also inserted into the hash table.
Additionally, since these false addresses must be removed from the hash
table after each collection (an action which is not necessary for interior
pointers), they are inserted into a special linked list as well so that they
can easily be found and deleted when mark-and-sweep is finished.

Although false pointers should be rare, the overhead of doing this is
always low, while the consequence of not doing it could be high.

9.1 Optimizing Mark 75

If interior pointers are not required to be recognized, both point 2 and
3 are unnecessary, while for frequent use of new interior pointers, a binary
search tree (such as a splay tree) could perform better than a hash table.

struct mark_variables:

all_meminfos

num_new_allocations

heap_start

heap_end

snapshot_mem_offset

meminfo_pool

reader

hash_table

false_addresses

address_pool

struct meminfo:

next

start

end

marked

interiors

struct address:

next

address

(code continues on next page)

76 Optimizations and Realtime Adjustments

// find_mem is now mostly rewritten:

find_mem(mv,address):

mem=get_hash(mv.hash_table,address)

if mem!=-1: // get_hash returns -1 when the address is not found

return mem

// Needs some memory for storing the address in the hash table.

add=get_pool(mv.address_pool)

add.address=address

// Maybe it’s an interior pointer...

foreach mem in mv.all_meminfos:

if address>=mem.start && address<mem.end:

// Yes, it’s an interior pointer

put_hash(mv.hash_table, address, mem)

put(add,mem.interiors)

return mem

// No, it was a false address! [1]

put_hash(mv.hash_table, address, NULL)

put(add, mv.false_addresses)

return NULL

// [1] This is probably very unlikely to happen.

(code continues on next page)

9.1 Optimizing Mark 77

get_new_meminfos(mv,num_new_allocations):

for i = 0 to num_new_allocations

from = stack_read(

mv.reader,

sizeof(struct meminfo_minimal)

)

to = get_pool(mv.meminfo_pool)

to.start = from.start

to.end = from.start+from.size

to.marked = false

to.interiors = {}

put(to, mv.all_meminfos)

put_hash(mv.hash_table, to.start, to)

run_sweep(mv):

survived_mem={}
foreach mem in mv .all_meminfos:

if mem.marked==true:

put(mem,survived_mem)

mem.marked=false

else:

size = mem.end-mem.start

for i=0 to size:

mem.start[i]=0

free(current_heap.mheap, mem.start, size)

remove_hash(mv.hash_table,mem.start)

foreach interior in mem.interiors:

remove_hash(mv.hash_table,interior.address)

put_pool(mv.address_pool,interior)

put_pool(mv .meminfo_pool,mem)

current_heap.all_meminfos=survived_mem

// The false addresses must be cleared between each

// collection.

foreach add in mv.false_addresses:

remove_hash(mv.hash_table,address)

put_pool(mv.address_pool,add)

mv.false_addresses={}

78 Optimizations and Realtime Adjustments

9.2 Optimizing Sweep

Similar to mark, both real and false CPU cache sharing can cause degraded
and unpredictable performance in sweep.

To avoid this, sweep should avoid calling free(), which both reads and
writes to the heap. Instead, we transport memory information from the
collector to the mutator on an array of minimal meminfo objects. (The
variable sweep mem holds this array.)

One place the mutator could free memory, is before calling alloc. One
thought could be that if the mutator tries to free more memory than it is
asked to allocate, we should not run out of memory.1 However, since freeing
memory is less important than processing audio, it would be preferable to
use a lower priority thread for freeing memory to avoid stealing time from
code having to reach a deadline. It must also be specified that this thread
must run on the same CPU as the audio thread to avoid CPU cache misses
and false sharing.

struct heap:

mheap

audio_function_can_run

audio_function

all_meminfos

tr_stack

start_new_gc

next

writer

ilock

run_free = SEMAPHORE_INIT(0)

free_thread_is_ready = SEMAPHORE_INIT(0)

sweep_mem = NULL

sweep_mem_size = 0

(code continues on next page)

1For the minimal memory allocator in section 7, which uses segregated lists extensively,
this is not always true.

9.2 Optimizing Sweep 79

free_thread():

while true:

signal(free_thread_is_ready)

heap = wait(run_free)

ilock1_lock(heap.ilock)

for i=0 to sweep_mem_size:

minimal = sweep_mem[i]

mem = minimal.mem

size = minimal.size

for i1=0 to size step 64:

ilock1_pause(heap.ilock)

for i2=i1 to min(size,i1+64):

mem[i2]=0

free(heap.mheap,mem,size)

ilock1_unlock(heap.ilock)

transport_meminfos(mv, free_mem):

sm = sweep_mem

sm_pos = 0

wait(free_thread_is_ready)

foreach mem in free_mem:

if sm_pos == MAX_FREE_ELEMENTS:

sweep_mem_size = sm_pos

signal(run_free,mv.heap)

wait(free_thread_is_ready)

sm_pos = 0

minimal=sm[sm_pos++]

minimal.mem=mem.start

minimal.size=mem.end-mem.start

sweep_mem_size = sm_pos

signal(run_free,mv.heap)

(code continues on next page)

80 Optimizations and Realtime Adjustments

// Mostly rewritten

run_sweep(mv):

free_mem = {}

survived_mem = {}

foreach mem in mv.all_meminfos:
if mem.marked==true:

put(mem,survived_mem)
mem.marked=false

else:
put(mem,free_mem)

current_heap.all_meminfos=survived_mem

transport_meminfos(mv,free_mem)

foreach mem in free_mem:

remove_hash(mv.hash_table,mem.start)
foreach interior in mem.interiors:

remove_hash(mv.hash_table,interior.address)
put_pool(mv.address_pool,interior)

put_pool(mv.meminfo_pool,mem)

foreach address in mv.false_addresses:
remove_hash(mv.hash_table,address)

mv.false_addresses={}

run_dsp_block_function(heap):
wait(heap.audio_function_can_run)

set_priority(free_thread,audio_thread_priority) // To avoid priority inversion!

ilock2_lock(heap.ilock)

heap.audio_function(heap)

ilock2_unlock(heap.ilock)

set_priority(free_thread,free_thread_priority)

if heap.start_new_gc==true:
heap.start_new_gc = false
current_heap = heap
signal(collector_ready)

else:
signal(heap.audio_function_can_run)

(code continues on next page)

9.2 Optimizing Sweep 81

gc_create_heap(audio_function):

heap = sys_alloc(sizeof(struct heap))

heap.mheap = create_mheap(heap_size)

heap.audio_function_can_run = SEMAPHORE_INIT(1)

heap.audio_function = audio_function

heap.all_meminfos = {}
heap.tr_stack = tr_stack_create(

MAX_RB_ELEMENTS

* sizeof(struct meminfo_minimal)

)

heap.writer = heap.tr_stack.writer

heap.ilock = create_ilock()

return heap

gc_init(new_heap_size):

heap_size = new_heap_size

roots_start = sys_alloc(MAX_ROOTS_SIZE)

roots_end = roots_start

snapshot_mem = sys_alloc(heap_size)

meminfo_pool = init_pool(sizeof(struct meminfo))

sweep_mem = sys_alloc(sizeof(struct meminfo_minimal)*MAX_FREE)

gc_thread = create_thread(REALTIME_PRIORITY,gc_thread)

free_thread = create_thread(REALTIME_PRIORITY,free_thread)

cpunum = get_cpu_num(audio_thread)

run_on_cpu(!cpunum, gc_thread)

run_on_cpu(cpunum, sweep_free_thread)

The code above uses a lock to prevent the audio thread and the free
thread from running simultaneously. Since the free thread frequently calls a
pause operation (ilock1 pause) in order to avoid blocking the audio thread,
an extended type of lock is used. This lock is implemented in appendix A.3.

Furthermore, since free and alloc are now protected by locks from run-
ning simultaneously, it is not necessary to run a thread safe version of the
dynamic memory allocator.

82 Optimizations and Realtime Adjustments

9.3 Priorities and Scheduling Policies

All threads used by the garbage collector needs to run with a realtime schedul-
ing policy to avoid running out of memory.

A GUI process could for instance delay garbage from being reclaimed if
the collector runs with incorrect priority and scheduling policy.

1. To prevent mark-and-sweep from blocking the audio thread,
mark-and-sweep must run with lower priority than the audio thread. 2. Since
the audio thread waits for snapshot to finish, the snapshot thread must have
at least the same priority as the audio thread.

In a POSIX environment [POS90], SCHED FIFO and SCHED RR are
the two realtime scheduling policies. The difference between SCHED FIFO
and SCHED RR is that SCHED FIFO never gives up execution unless an-
other realtime process with higher priority is ready. SCHED RR is quite
similar, but will give up execution after a short while in case another real-
time process with the same priority is ready [Har93].

Below is a list of priorities and scheduling policies for our collector when
running in a POSIX environment.

x = audio thread priority

snapshot thread priority = SCHED_FIFO / x

sync server thread priority = SCHED_FIFO / x

heap decider thread priority = SCHED_FIFO / x

mark+sweep thread priority = SCHED_RR / 0

free thread priority = SCHED_RR / 0

In Linux distributions, the JACK [LFO05] audio thread priority is nor-
mally set somewhere between 10% and 60% of maximum SCHED FIFO pri-
ority. Audio thread priority in other systems are likely to be in the same
range.

9.4 Atomic Memory

Atomic memory is memory not containing pointers to the heap. The most
common type of atomic memory in audio programs are sample buffers.

It is not necessary to scan atomic memory for pointers in the mark phase,
and it is not necessary to take snapshot of atomic memory.

To optimize the collector for atomic memory, we use two heaps, and let the

9.5 Optimizing Snapshot 83

user of the collector specify when memory is atomic. BDW-GC distinguishes
atomic and non-atomic memory by providing two functions for allocat-
ing memory: GC malloc atomic() and GC alloc(). Rollendurchmesserzeit-
sammler provides similar functions called tar alloc atomic and tar alloc.
(The implementation has been left out.)

9.5 Optimizing Snapshot

So far, all memory in the heap has been copied when taking snapshot. (full
snapshot.) To lower CPU usage, only the used parts of the heap can be
copied instead (partial snapshot). But a full snapshot must still be taken
once per second. If not, there wouldn’t be a lower bound, only an upper
bound.

The effect in a realtime system is to trade CPU time, previously spent
copying unused memory, for time which can now be spent doing non-realtime
operations such as updating graphics or handling user events:

take_heap_snapshot(heap):

if at_least_one_second_since_last_full_copy(heap):

size = heap_size

else:

size = heap.mheap.freemem - heap.mheap

for i = 0 to size :

snapshot_mem[i] = heap.mheap[i]

Another optimization is performed by checking if memory has been allo-
cated in the run dsp block function function:

84 Optimizations and Realtime Adjustments

run_dsp_block_function(heap):

wait(heap.audio_function_can_run)

set_priority(free_thread,audio_thread_priority)

ilock2_lock(heap.ilock)

heap.audio_function(heap)

ilock2_unlock(heap.ilock)

set_priority(free_thread,free_thread_priority)

if heap.start_new_gc==true

&& (stack_space(heap.writer) > 0

|| at_least_one_second_since_last_full_copy(heap)):

heap.start_new_gc = false

current_heap = heap

signal(collector_ready)

else:

signal(heap.audio_function_can_run)

Sleeping instead of Taking Full Snapshot

An alternative is to measure the time it takes to take a full snapshot, and
then sleep for the remaining time after taking a partial snapshot. This has
at least two advantages:

1. The OS can let other programs run while the snapshot thread is sleep-
ing.

2. If using too much CPU, the glitch in sound is heard immediately, not
after about a second.

However, sleeping instead of taking full snapshot requires that the oper-
ating system can sleep accurately for a fraction of the time it takes to play
a block of audio. In other words, sleeping needs to work for durations of at
least a magnitude lower than 1.33 milliseconds in order to properly support
all soundcard configurations. Such fine grained sleeping are not commonly
supported by normal operating systems, and on top of that comes latency to
wake up a processes, which is limited by hardware.2

2Scheduling latency has been reported to be 0.1 milliseconds at least on one laptop
running a Linux operating system tweaked for realtime performance [Ble10].

9.6 Safety Buffer 85

9.6 Safety Buffer

As discussed in section 1.5, a conservative garbage collector is not guaranteed
to always use the same amount of memory every time a program is run.

To compensate for this variation, we need a safety buffer. If the program
needs to use the safety buffer, we give the user a warning:

struct heap:
mheap
audio_function_can_run
audio_function
all_meminfos
tr_stack
start_new_gc
next
writer
ilock
too_much_memory_warning

run_dsp_block_function(heap):
wait(heap.audio_function_can_run)

set_priority(free_thread,audio_thread_priority)
ilock2_lock(heap.ilock)

heap.audio_function(heap)
ilock2_unlock(heap.ilock)
set_priority(free_thread,free_thread_priority)

if heap.too_much_memory_warning == false

&& (heap.mheap.freemem - heap.mheap) > minimal_full_snapshot_size():

heap.too_much_memory_warning = true

warning("Using safety buffer. Program may run out of memory.")

if heap.start_new_gc==true:
&& (stack_space(heap.writer) > 0

|| at_least_one_second_since_last_full_copy(heap)):
heap.start_new_gc = false
current_heap = heap
signal(collector_ready)

else:
signal(heap.audio_function_can_run)

The above code calls the function minimal full snapshot size() which re-
turns the size of the heap subtracted by the size of the safety buffer.

86 Optimizations and Realtime Adjustments

The size of the safety buffer should be so large that if there is no warning
during rehearsal, the program should not run out of memory during a concert.

Fragmentation, false pointers and memory not reclaimed fast enough can
make the available amount of memory unpredictable.

In chapter 7, we analyzed fragmentation both for the custom memory
allocator (Poolmem), and TLSF. As long as we don’t allocate randomly
sized blocks, Poolmem seems to perform excellently, providing virtually no
fragmentation. Almost the same can be said about TLSF, but TLSF does
not provide predictable fragmentation.

A safety buffer does not have to compensate for fragmentation per se, but
rather for unexpected fragmentation. If the fragmentation is similar every
time a program is run, it behaves predictably, and no safety buffer is needed.
(Although a warning should probably still be given if there’s little memory
left.)

In [MRR+08], an extensive test of fragmentation for TLSF is performed,
and the author claims worst-case fragmentation to be lower than 30%. Since
expected fragmentation is likely to be much higher (perhaps even magnitudes
higher) than unexpected fragmentation, we assume that we are never going
to see more than a 30% worst-case unexpected fragmentation. Considering
that humans also should get a warning in case there is little memory left (even
if memory usage is predictable), using 30% of the heap for safety sounds like
a proper value:

minimal_full_snapshot_size():

return (heap_size * 7) / 10

87

10
Finding Snapshot Duration

We want to achieve consistent snapshot performance. We also want to take
snapshots often enough to avoid running out of memory.

Defining the problem

There are two problems that can cause inconsistent snapshot performance:

1. Cache misses, wake up latency for threads, having to wait for other
threads to yield execution, higher-priority threads taking over execution
in the middle of a snapshot, hardware interrupts, and so forth, can
occasionally cause snapshot to take longer time.

2. The memory bus is shared by all CPUs. Non-realtime programs have
equal access to the memory bus if they run on a different CPU.

The first problem is a list of factors that only happens occasionally (at
least for realtime programs), while the second problem can happen if other
simultaneously running programs are accessing memory. We try to solve the
problems like this:

1. To account for the first problem, we set up a window in which a full
snapshot must be taken. If we are inside the window, and there was
not enough time to take a full snapshot this block, we try again at the
next block. In case we don’t manage to take a full snapshot within the
window, a warning is given. We set the window size to 1 second.1

1As usual, 1 second is used since it seems like a fairly appropriate value. In an imple-
mentation, however, it would be natural for the user to be able to adjust it.

88 Finding Snapshot Duration

2. To account for the second problem, we try to find a minimum snapshot
performance (e.g. in megabytes per milliseconds). We find minimum
snapshot performance by dividing best case performance by the number
of CPUs.

Setting up a Hypothesis

We define a hypothesis H which says that for every heap size, each heap
having a sequence of measurements within a one second window, at least one
snapshot will perform better than 1

c
of best-case performance:

H : ∀m : ∃ t ∈ B : p(m, t, c − 1) ≥
p(M)

c
, t ≤ 1 (10.1)

where c is the number of CPUs, B = {b, 3b, 5b, 7b, . . .}, b is the audio
block duration (in seconds), p(M) is best-case performance, M is a number
much larger than the size of the CPU cache, and p(m, t, c−1) is the snapshot
performance when copying an m-sized heap at time t while c−1 other CPUs
access the memory bus simultaneously.

Testing the Hypothesis

We try to verify H by running several tests:

• p(m, t, 0) is found by running the program in appendix A.4, using
test num==0. This tests snapshot performance while no other threads
access the memory bus simultaneously. This test shows typical snap-
shot performance when no other application is running at the same
time. p(m, t, 0) is not used to verify H , but it is included to better
verify that the test has been properly set up.

• p(m, t, c − 1) is found by running the program in appendix A.4, using
test num==1. This tests snapshot performance while 40 other non-
realtime threads access the memory bus simultaneously. (The bench-
mark thread always runs with realtime priority)

• p(m, t, c−1)RT is found by running the program in appendix A.4, using
test num==2. This tests snapshot performance while c− 1 other real-
time threads access the memory bus simultaneously. The benchmark
thread runs on CPU number 0, the first realtime thread runs on CPU
number 1, and so on.

• p(M) is found by running the program in appendix A.5. The program
in appendix A.5 runs several tests under various conditions, and returns
the fastest result of all tests.

10.1 Implementation 89

Test setup

• CPU: Intel Core i7 920 @ 2.67GHz. CPU has 4 cores. Each core has
a 32kB L1 data cache and a 256kB L2 cache. An 8 MB L3 cache is
shared by all cores. Hyper threading, CPU scaling, and Turbo Mode
is disabled.

• Memory: DDR3 1066MHz.

• Operating Systems:

– 32 bit Linux Fedora Core 11, running the
2.6.29.6-1.rt23.4.fc11.ccrma.i586.rt PREEMPT RT realtime
kernel [Kac10].

– 64 bit Linux Fedora Core 13, running the 2.6.33 kernel.

• All tests measures the time it takes to take snapshot of 38 different
heap sizes: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0,
55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, and 100.0 MB.

• Each heap is tested repeatedly for 1 second.

• Raw benchmark data is found in appendix B.1.

Data analysis

Best-case results are shown in figure 10.1 and figure 10.2. We see from the
figures that neither p(m, t, c − 1)RT nor p(m, t, c − 1) are below p(M)

c
for any

heap size. H seems to be correct.

10.1 Implementation

Following the hypothesis H , we need a one second window in which a full
snapshot must be taken. The required snapshot performance within that
window must be better than p(M)

c
at least once. As soon as the required

snapshot performance has been met, we close the window.
If we spend more than a second trying to take full snapshot, we give up,

make sure that at least a partial snapshot is taken (so that a new collection
can start), and give the user a warning.

This scheme should work since it seems impossible for the system to
be almost continuously tortured for more than a second without the user

90 Finding Snapshot Duration

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
na

ps
ho

t p
er

fo
rm

an
ce

 (
M

B
/m

s)

Heap size (MB)

p(m,t,0)

p(m,t,3)

p(m,t,3)RT

p(M)

p(M)/c

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

S
na

ps
ho

t p
er

fo
rm

an
ce

 (
M

B
/m

s)

Heap size (MB)

p(m,t,0)

p(m,t,3)

p(m,t,3)RT

p(M)

p(M)/c

Figure 10.1: Snapshot Performance on a 32 Bit Linux Realtime Kernel

10.1 Implementation 91

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
na

ps
ho

t p
er

fo
rm

an
ce

 (
M

B
/m

s)

Heap size (MB)

p(m,t,0)

p(m,t,3)

p(m,t,3)RT

p(M)

p(M)/c

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

S
na

ps
ho

t p
er

fo
rm

an
ce

 (
M

B
/m

s)

Heap size (MB)

p(m,t,0)

p(m,t,3)

p(m,t,3)RT

p(M)

p(M)/c

Figure 10.2: Snapshot Performance on a 64 Bit Linux Kernel asdfas asdf
asdf asdf asdf as

92 Finding Snapshot Duration

running a program which either has a bug, or where this behavior could not
be predicted or at least discovered. If a snapshot takes longer time than
usual, the user should get a warning long before the program starts using so
much memory that a partial snapshot can not be taken within the deadline.

Instead of dividing ideal snapshot duration by c to create an upper bound
on snapshot duration, we increase the ratio of the heap reserved as safety
buffer. Although more memory is required this way, the extra memory is not
wasted since it will be available for safety, plus that we reduce the risk of
having to busy loop (see code):

ideal_snapshot_performance = read_from_file() /* p(M), found at compile time. */

full_snapshot_duration = heap_size/ideal_snapshot_performance

last_full_snapshot = 0

window_length = 1 second

minimal_full_snapshot_size():

if num_cpu==1:

return (heap_size*7)/10

else:

return heap_size/num_cpu

take_heap_snapshot(heap): /* Rewritten: */

time = get_time()

if time < last_full_snapshot + 1 second:
return take_heap_snapshot_before_window(heap)

if time < last_full_snapshot + 1 second + window_length:
return take_heap_snapshot_inside_window(heap)

else
return take_heap_snapshot_after_window(heap)

(code continues on next page)

10.1 Implementation 93

take_heap_snapshot_before_window(heap):

pos = 0
partial_size = heap.mheap.freemem - heap.mheap
start_time = get_time()

while true:
next_pos = pos + 16 * 1024
if next_pos > partial_size:

next_pos = partial_size
while pos < next_pos:

snapshot_mem[pos] = heap.mheap[pos]
pos++

duration = start_time - get_time()

if pos==partial_size:
return true

elseif duration >= full_snapshot_duration:
return false

take_heap_snapshot_inside_window(heap):

pos = 0
size = heap_size
partial_size = heap.mheap.freemem - heap.mheap
start_time = get_time()

while true:
next_pos = pos + 16 * 1024
if next_pos > size:

next_pos = size
while pos < next_pos:

snapshot_mem[pos] = heap.mheap[pos]
pos++

time = get_time()
duration = start_time - time

if pos==size:
/* force worst-case by busy-looping */
while (start_time - get_time()) < full_snapshot_duration:
do nothing

last_full_snapshot = time
return true

elseif duration > full_snapshot_duration:
return pos > partial_size

(code continues on next page)

94 Finding Snapshot Duration

take_heap_snapshot_after_window(heap): /* This should not happen. */

pos = 0
size = heap_size
partial_size = heap.mheap.freemem - heap.mheap
start_time = get_time()

while true:
next_pos = pos + 16 * 1024
if next_pos > size:

next_pos = size
while pos < next_pos:

snapshot_mem[pos] = heap.mheap[pos]
pos++

time = get_time()
duration = start_time - time

if pos==size:
last_full_snapshot = time
return true

elseif duration > full_snapshot_duration
&& pos >= partial_size:

warning("Unable to take full snapshot.")
last_full_snapshot = time /* Not true, but a warning has been given. */
return true

gc_thread():
mv = sys_alloc(sizeof(struct mark_variables))
mv.meminfo_pool = init_pool(sizeof(struct meminfo))

while true:
wait(collector_ready)
heap = current_heap
reset_roots()
take_root_snapshot(global_vars_start, global_vars_end)

new_collection_can_run = take_heap_snapshot(heap)

prepare_new_gc(mv, heap)

mv.num_new_allocations =
stack space(mv.reader)

sizeof(struct meminfo minimal)

signal(heap.audio_function_can_run)

if mv.num_new_allocations > 0:
if new_collection_can_run:

signal(mark_and_sweep_ready, mv)

else:

get_new_meminfos(heap,mv.num_new_allocations)

95

11
Benchmarks

In these benchmarks, the results of Rollendurchmesserzeitsammler (Rollen-
durch) is compared with the results of a traditional mark-and-sweep collector.
The mark-and-sweep collector was made by modifying Rollendurch to work
directly on the heap and not on a snapshot.1

The most important comparison is whether taking snapshots is more effi-
cient and more predictable than running mark in a mark-and-sweep collector.
The reason for comparing snapshot with mark, is that these are the two op-
erations in their respective collectors that can not run simultaneously with
the mutator.

For C programs which uses normal pointers and are not providing read
or write barriers, no other type of garbage collector can work. The only
exception is the snapshot-at-the-beginning collector described in section 1.6,
which uses copy-on-write to create the snapshot. But a snapshot-at-the-
beginning collector using copy-on-write can not provide better worst-case
performance than Rollendurch.

11.1 Setup

• The program in appendix A.1 was used to run the test. The same
program was also used to run the fragmentation test in chapter 7, and
a detailed description of the program is found in section 7.2.

Both Rollendurch and the mark-and-sweep collector used the memory
allocator described in chapter 7.

• The same computer which was used in chapter 10 is also used here, a

1Compile time option: NO SNAPSHOT.

96 Benchmarks

2.67GHz Intel Core i7 920 processor with 8 MB shared L3 cache. Hyper
threading, CPU scaling and Turbo mode was disabled.

• Time values were gathered using the CPU time stamp counter (TSC),
and all threads were running with a realtime scheduling policy, either
SCHED FIFO or SCHED RR.

• All threads were locked to run on only one CPU to prevent timings from
fluctuating. (Rollendurch bounds all threads to one CPU by default.)
The threads were configured like this:

Mark-and-sweep Rollendurch
Thread CPU # Thread CPU #

Audio Thread 0 Audio Thread 0
Free Thread 0 Free Thread 0
Mark+Sweep Thread 0 Mark+Sweep Thread 1

Snapshot Thread 1

Table 11.1: CPU Assignments

• The size of the pointer-containing heap was 4MB. 70724 bytes were
used at most by the program. (i.e. the highest allocated memory
position), and the size of the roots were 18584 bytes.

• The size of the non-pointer-containing heap was set to 128MB, but the
size of the non-pointer-containing heap should not have any affect on
the performance.

• All tests were ran 5 times for both types of garbage collector. The
worst results of the 5 tests were used in this chapter. The difference
between the 5 tests were minimal for both collectors, except for worst-
case blocking time for the mark-and-sweep collector, which differed by
a factor of 1.78,

• A new garbage collection was started at each second block. But only
if new memory had been allocated since last collection. Then the col-
lection would be delayed at least one block. Block duration during this
test was 5.8ms, which is a normal setting.

• All benchmark data are listed in appendix B.2.

11.2 Results 97

11.2 Results

Total Minimum Average Maximum #

snapshot length (kB) 234752 1024 3912 4096 60

audio (ms) 10264.081 0.387 0.989 3.154 10375
free (ms) 20.637 0.000 0.000 0.004 243225

sweep (ms) 30.093 0.000 0.003 0.023 10374
mark (ms) 358.098 0.021 0.069 0.219 5187

roots snapshot (ms) 9.308 0.001 0.002 0.028 5187
partial snapshot (ms) 23.157 0.001 0.005 0.012 5128

full snapshot (ms) 43.182 0.712 0.732 0.741 59

total (ms) 10748.557

Table 11.2: Rollendurch. Benchmarks

Total Minimum Average Maximum #

audio (ms) 10270.766 0.386 0.990 3.168 10374
free (ms) 20.500 0.000 0.000 0.004 243228

sweep (ms) 28.433 0.000 0.003 0.017 10376
mark (ms) 376.456 0.026 0.073 0.317 5188

total (ms) 10696.154

Table 11.3: Mark-and-Sweep Benchmarks

Table 11.2 and table 11.3 shows the worst benchmarks among the results
of the two respective collectors. We are going to use these data. (The same
data are also found in figure B.6 and figure B.9 in appendix B.2.)

98 Benchmarks

Blocking Time

Mark-and-sweep Rollendurch
Min. Avg. Max. Min. Avg. Max.

mark 0.026ms 0.073ms 0.317ms
roots snapshot 0.001ms 0.002ms 0.028ms
partial snapshot 0.001ms 0.005ms 0.012ms

total 0.026ms 0.073ms 0.317ms 0.002ms 0.006ms 0.040ms

Table 11.4: Blocking Time

Table 11.4 shows the amount of time the garbage collector blocks audio
processing during one audio block. Full snapshot is not included in this table.

Since the roots were only 18584 bytes long, the maximum value 0.28ms
could be caused by cache misses.

Relative Time

Mark-and-sweep Rollendurch
Blocking Non-blocking Blocking Non-blocking

3.52% 0.46% 0.70% 3.80%

Table 11.5: Time Spent by the Garbage Collector. (time
timeaudio+gc

)

Although Rollendurch uses a little bit more CPU than the
mark-and-sweep collector, most of it is non-blocking and spent running in
parallel on a different CPU than audio processing.

Worst Case

Mark-and-sweep Rollendurch
Min Avg. Max Min Avg. Max

n/a n/a n/a 0.712ms 0.732ms 0.741ms

Table 11.6: Time Simulating Worst Case

Table 11.6 shows the time simulating worst case. For Rollendurch, this
is the time taking full snapshot. The numbers approximately show the time
it would take to take partial snapshot if 3912kB of memory was used by the
program.

11.3 Data analysis 99

11.3 Data analysis

Simulating worst-case for mark-and-sweep has not been implemented since
we don’t known how. (It’s most likely impossible to do reliably.) But if we
compare total time running mark in mark-and-sweep with the the total time
taking partial snapshot in Rollendurch (376.455780ms

23.157463ms
), worst-case for mark-

and-sweep is about 16 times higher than Rollendurch.
Comparing worst-case occurrences (instead of combined time) indicates

that worst-case for mark-and-sweep is about 26 times higher than Rollen-
durch (0.317276ms

0.012048ms
).

These two attempts to find worst-case were speculative. But we do know
from the data that the highest blocking time for a normal mark-and-sweep
collector was quite large (0.3ms), even though only 70724 bytes were used.
Taking partial snapshot never took more than 0.01ms in any of the tests.
Higher number of cache misses in mark can explain some of the difference.

100 The Second Garbage Collector

12
The Second Garbage Collector

This chapter describes a novel concurrent non-moving realtime garbage col-
lector. The collector uses a minimal write barrier to support very large heaps
and also to avoid the problems described in section 5.3.

In this collector, only the roots are copied between blocks. Copying the
roots should normally be a light operation and the size of the roots should
not vary during execution.

Furthermore, as we saw in section 1.2, pointers are never written inside
DSP loops, and therefore the additional number of instructions caused by
using a write barrier should be low,

12.1 Description of the Algorithm

Similar to the first garbage collector, this collector also runs a mark-and-
sweep on a snapshot. The snapshot and the heap are properly separated.
The snapshot is only accessed by the collector, and the heap is only accessed
by the mutator.

When the collector works on a snapshot instead of the heap, we avoid
synchronizations between the collector and the mutator, and the CPU cache
used by the mutator is not cooled down, which could contribute to unpre-
dictable performance.

The write barrier writes to a special block of memory we call a comple-
mentary block. The complementary block has the same size as the heap and
the snapshot, and contains data which are different between the heap and
the snapshot.

The write barrier is simple. It only stores the R-value into the same
position in the complementary block, as in the heap. This operation should

12.2 Complementary Stacks 101

Program 9 C Macro for Writing a Pointer to the Heap

#define WRITE_HEAP_POINTER(L_VALUE,R_VALUE)do{ \
void* _gc_pointer = (void*)R_VALUE; \
char* _gc_mempos = (char*)L_VALUE; \
*((void**)(_gc_mempos+snap_offset)) = _gc_pointer; \
*((void**)_gc_mempos) = _gc_pointer; \

}while(0)

normally only require one or two instructions.1 (But a few extra instructions
are needed if it’s necessary to check whether the L-Value is in the heap.)

Two complementary blocks are used to store newly written heap-pointers.
None of them are accessed simultaneously by the collector and the mutator,
hence cache conflicts are avoided. When we start a new garbage collection,
the two complementary blocks swap position so that comp block gc becomes
comp block wb and vice versa. The collector then starts merging new data
into the snapshot by scanning the comp block gc complementary block. (This
happens in the function unload and reset comp block in program 10). Scan-
ning the complementary block happens in parallel, so it should not disrupt
audio. The scanning should be cheap compared to mark-and-sweep, and
especially compared to audio processing.

Similar to the first garbage collector, this collector can also be optimized
by using two heaps. One heap for pointer data, and another heap for atomic
data. Write barriers and complementary blocks are not needed for atomic
data.

12.2 Complementary Stacks

The complementary blocks are scanned for pointers in the function
unload and reset comp block in program 10. This could put a strain on the
memory bus. (Although far less than the strain caused by taking full snap-
shots in the first collector).

To avoid this, we can extend the write barrier to store
complementary block addresses in a stack. This way, the collector will
know the exact positions which has been modified since last collection.
If the stack becomes full, the complementary block has to be scanned
manually, as before. Although the stack should not be too large, a warning
could be given in case the stack becomes full, so that the default size can be
increased. In the meantime, a larger stack can be allocated automatically.

1Two x86 instructions were generated by the Gnu C compiler for the write barrier.

102 The Second Garbage Collector

Program 10 Basic Version of the Second Collector
ps = sizeof(void*)

heappointers = calloc(ps,FULL_HEAP_SIZE)

snapshot = calloc(ps,FULL_HEAP_SIZE)
comp_block_wb = calloc(ps,FULL_HEAP_SIZE)
comp_block_gc = calloc(ps,FULL_HEAP_SIZE)

snap_offset = comp_block_gc - heappointers

roots_snapshot = malloc(MAX_ROOT_SIZE)

UNUSED = -1 // Could be NULL as well...

init()
start_lower_priority_thread(gc_thread)
for i = 0 to FULL_HEAP_SIZE do

comp_block_gc[i] = UNUSED
comp_block_wb[i] = UNUSED

unload_and_reset_comp_block()
for i in all live memory do

if comp_block_gc[i] != UNUSED then
snapshot[i] = comp_block_gc[i]
comp_block_gc[i] = UNUSED

endif

gc_thread()
loop forever
wait for collector semaphore
unload_and_reset_comp_block()
run mark and sweep on snapshot

audio function()
produce audio
if collector is waiting and there might be garbage then

swap(&comp_block_gc,&comp_block_wb)
snap_offset = comp_block_wb - heappointers
copy roots to roots_snapshot
signal collector semaphore

endif

12.3 Memory Overhead 103

This is likely to work well since a new collection is initiated as often as
possible, and therefore the write barrier is likely to be used only a few times
between each collection. This solution should both reduce access to the
memory bus and lower CPU usage by the collector. Thus, it could be worth
the cost of having a slightly less cheap write barrier, as shown in program 11.

Contrary to the first write barrier, this write barrier does not work for
multithreaded programs. But by using thread-local complimentary stacks,
we avoid that problem.

Program 12

Program 12 extends the collector to use complementary stacks. Program 12
also adds another thread so that roots can be copied concurrently with pro-
grams waiting for the audio function to finish. Reallocating stacks happens
in the mark-and-sweep thread, which does not block audio processing.

Additional buffer

A required optimization when adding complementary stacks, is to add an
additional buffer between the complementary stacks and the complemen-
tary blocks. This buffer lowers the chance for the collector having to call
unload and reset comp block , but more importantly is that it limits the re-
quired size of the stack. A small stack causes less memory to be accessed
from the mutator (which could cause cache misses), and it also decreases the
chance of cooling the CPU cache. (It’s better to cool the CPU cache of the
collector)

The buffer should be large enough for the complementary stacks to be
emptied between each audio block, at least as long as nothing extreme hap-
pens.

The additional buffer is not implemented in program 12.

12.3 Memory Overhead

The snapshot can not be shared between several instruments since the content
of the snapshot in the previous collection is also used in the current. One of
the complementary blocks can however be shared since it’s only used while
initiating a new garbage collection. Therefore, the memory usage is

atomic heapsize + heapsize ∗
n ∗ 3 + 1

n
(12.1)

where n is the number of heaps used by the garbage collector.

104 The Second Garbage Collector

Program 11 Extended C Macro for Writing a Pointer to the Heap

#define WRITE_HEAP_POINTER(L_VALUE,R_VALUE)do{ \
void* _gc_pointer = (void*)R_VALUE; \
char* _gc_mempos = (char*)L_VALUE; \

char* _gc_comp_mempos = _gc_mempos+snap_offset; \

if(comp_stack_wb < comp_stack_wb_top) \

*(comp_stack_wb++) = _gc_comp_mempos; \

*((void**) _gc_comp_mempos) = _gc_pointer; \

*((void**) _gc_mempos) = _gc_pointer; \
}while(0)

12.4 Write Barrier for the Roots

By using a write barrier for the roots, we avoid copying the roots before
starting a new collection. This lowers pause times further, but increases
write barrier impact and puts more pressure on complementary stacks.

However, since the roots are copied concurrently between audio blocks,
a write barrier for the roots would probably never make any difference for
audio processing.

Program 12 Extended Version of the Second Collector

comp_stack_wb_bot = calloc(ps,DEFAULT_STACK_SIZE)

comp_stack_gc_bot = calloc(ps,DEFAULT_STACK_SIZE)

comp_stack_wb = comp_stack_wb

comp_stack_gc = comp_stack_gc

comp_stack_wb_top = comp_stack_wb + DEFAULT_STACK_SIZE

comp_stack_gc_top = comp_stack_gc + DEFAULT_STACK_SIZE

stack_size = DEFAULT_STACK_SIZE

stack_size_gc = DEFAULT_STACK_SIZE

stack_size_wb = DEFAULT_STACK_SIZE

unload_from_stack()
for i = 0 to comp_stack_gc-comp_stack_gc_bot do

pos = comp_stack_gc_bot[i]
snapshot[pos] = comp_block_gc[pos]
comp_block_gc[pos] = UNUSED

comp_stack_gc = comp_stack_gc_bot

(code continues on next page)

12.4 Write Barrier for the Roots 105

update_snapshot()
if comp_stack_gc < comp_stack_gc_top then

unload_from_stack()
else

if stack_size == stack_size_gc && stack_size<MAX_STACK_SIZE then
warning("stack full")
stack_size = stack_size * 2

endif
unload_and_reset_comp_block() // back-up solution

endif

mark_and_sweep_thread()
loop forever

wait for mark_and_sweep semaphore
run mark and sweep on snapshot
if stack_size_gc < stack_size then

comp_stack_gc_bot = realloc(comp_stack_gc_bot, stack_size)
comp_stack_gc = comp_stack_gc_bot
comp_stack_gc_top = comp_stack_bot + stack_size

swap()
swap(&comp_block_gc,&comp_block_wb)
snap_offset = comp_block_wb - heappointers
swap(&comp_stack_gc,&comp_stack_wb)
swap(&comp_stack_gc_top,&comp_stack_wb_top)
swap(&comp_stack_gc_bot,&comp_stack_wb_bot)
swap(&stack_size_gc,&stack_size_wb)

gc_thread()
loop forever

wait for collector semaphore
if mark_and_sweep is waiting then

swap()
if there might be garbage then

copy roots to roots_snapshot
signal audio semaphore
update_snapshot()
signal mark_and_sweep

else
signal audio semaphore

endif
else

signal audio semaphore
endif

audio function()
wait for audio semaphore
produce audio
signal collector semaphore

106 Conclusion

13
Conclusion

Besides describing two garbage collectors, this thesis has also discussed typi-
cal features of audio code, memory allocation and fragmentation, plus issues
with CPU cache and the memory bus. Its focus has been realtime audio
processing on multiprocessor personal computers.

13.1 Achievements

1. Described and implemented a conservative garbage collector for real-
time audio processing which can replace Hans Boehm’s conservative
collector for C and C++ in existing programming languages. Bench-
marks shows that the collector is almost as efficient as a mark-and-
sweep collector, but with significantly lower pause times. The collec-
tor simulates worst-case once per second to provide predictable perfor-
mance.

2. Described a new type of garbage collector for audio processing which
can provide minimal pause times.

13.2 Future Work

1. Investigate further how to make snapshot performance faster by pre-
venting non-realtime threads from using the memory bus while taking
snapshot. This is a problem which goes further than copying mem-
ory. Any realtime process accessing memory outside the CPU cache
can experience unpredictable performance since non-realtime processes
have equal access to the memory bus. One way to achieve this would

13.3 Beyond Audio Processing 107

be to modify the Linux kernel scheduler to suspend all non-realtime
processes when a realtime process is running.

2. Implement and test the second garbage collector. Quantitative evalua-
tions are needed to verify the design choices in Chapter 12. In addition,
the collector should be tested against other concurrent realtime collec-
tors, such as the Metronome collector or the STOPLESS collector.

3. Find how to decide whether audio code spent more time than usual
during the last block to avoid taking snapshot at that block. In addi-
tion, investigate advantages and disadvantages of letting the mutator
stop the snapshot process instead of waiting for the previous snapshot
to finish.

4. Implement a server for bounding realtime audio processes to CPUs and
properly schedule optional realtime operations such as taking snap-
shots. This functionality can be implemented by extending the JACK
audio system.

13.3 Beyond Audio Processing

The two garbage collectors are not limited to audio processing.

The First Garbage Collector

If future personal computers continue to have more and faster memory, the
first garbage collector becomes more relevant also for other types of usages.
The benchmarks in chapter 11 showed that Rollendurchmesserzeitsammler
only used a little bit more CPU than the mark-and-sweep collector. Since
most of the time was spent running in parallel with the mutator, both pause
times and execution time were lowered. This indicates that programs us-
ing normal mark-and-sweep collectors can run faster, and significantly lower
pause times, by taking snapshot of the heap. The price is a higher memory
overhead.

The Second Garbage Collector

Although the second collector has a very large memory overhead, it should
work well also for other types of usages than audio processing. By using a
write barrier for the roots, it should be possible to achieve pause times in the
range of nanoseconds. If the current trend of personal computers continues,

108 Conclusion

where the increase in memory is larger than the increase in CPU speed, the
second garbage collector will become more relevant.

109

A
Source Codes

A.1 Benchmark Program

(define-stalin (Reverb delay-length)
(Seq (all-pass :feedback -0.7 :feedforward 0.7 :size 1051)

(all-pass :feedback -0.7 :feedforward 0.7 :size 337)
(all-pass :feedback -0.7 :feedforward 0.7 :size 113)
(Sum (comb :scaler 0.742 :size 9601)

(comb :scaler 0.733 :size 10007)
(comb :scaler 0.715 :size 10799)
(comb :scaler 0.697 :size 11597))

(delay :size delay-length:-s)))

(define-stalin (Stereo-pan c)
(define gakk 9)
(Split Identity

(* left)
(* right)

:where left (* sqrt2/2 (+ (cos angle) (sin angle)))
:where right (* sqrt2/2 (- (cos angle) (sin angle)))
:where angle (- pi/4 (* c pi/2))
:where sqrt2/2 (/ (sqrt 2) 2)))

(define-stalin (Fx-ctrl clean wet Fx)
(Sum (* clean)

(Seq Fx
(* wet))))

(define-stalin (softsynth)
(while #t
(wait-midi :command note-on

(gen-sound :while (-> adsr is-running)
(Seq (Prod (square-wave :frequency (midi->hz (midi-note)))

(midi-vol)
(-> adsr next))

(Stereo-pan (/ (midi-note) 127))))

110 Source Codes

(spawn
(wait-midi :command note-off :note (midi-note)

(-> adsr stop)))
:where adsr (make-adsr :a 20:-ms

:d 40:-ms
:s 0.2
:r 10:-ms))))

(<rt-stalin> :runtime-checks #f
(seed 500)

;; triangle-wave grain cloud
(spawn
(wait 5:-s)
(range i 1 500

(wait (random 30):-ms)
(define osc (make-triangle-wave :frequency (between 50 2000)))
(define dur (between 400 2000):-ms)
(define e (make-env ’((0 0)(.5 .05)(1 0)) :dur dur))
(sound :dur dur
(out (* (env e) (triangle-wave osc))))))

;; Insect swarm, algorithm implemented by Bill Schottstaedt.
(spawn
(wait 20:-s)
(range i 1 400

(wait (between 0.01:-s 0.03:-s))
(spawn
(define dur (between 0.4 1.6))
(define frequency (between 600 8000))
(define amplitude (between 0.03 0.2))
(define amp-env ’(0 0 25 1 75 .7 100 0))
(define mod-freq (between 30 80))
(define mod-skew (between -30.0 -2.0))
(define mod-freq-env ’(0 0 40 1 95 1 100 .5))
(define mod-index (between 250 700.0))
(define mod-index-env ’(0 1 25 .7 75 .78 100 1))
(define fm-index (between 0.003 0.700))
(define fm-ratio .500)

(define degree 45.0)
(define distance 1.0)
(define reverb-amount 0.005)
(let* ((carrier (make-oscil :frequency frequency))

(fm1-osc (make-oscil :frequency mod-freq))
(fm2-osc (make-oscil :frequency (* fm-ratio frequency)))
(ampf (make-env amp-env :scaler amplitude

:duration dur))
(indf (make-env mod-index-env :scaler (hz->radians mod-index)

:duration dur))
(modfrqf (make-env mod-freq-env :scaler (hz->radians mod-skew)

:duration dur))
(fm2-amp (hz->radians (* fm-index fm-ratio frequency))))

A.1 Benchmark Program 111

(sound :dur dur:-s
(let* ((garble-in (* (env indf)

(oscil fm1-osc (env modfrqf))))
(garble-out (* fm2-amp (oscil fm2-osc garble-in))))

(out (* (env ampf)
(oscil carrier (+ garble-out garble-in))))))))))

;; pluck strings (jaffe-smith algorithm, implemented by Bill Schottstaedt)
(spawn
(wait 40:-s)
(range i 1 2000
(wait (random 0.01):-s)
(define dur (between 0.1 1.2))
(define freq (between 50 400))
(define amp (between 0.3 0.8))
(define weighting (between 0.2 0.5))
(define lossfact (between 0.9 0.99))

(define (getOptimumC S o p)
(let* ((pa (* (/ 1.0 o) (atan (* S (sin o)) (+ (- 1.0 S) (* S (cos o))))))

(tmpInt (inexact->exact (floor (- p pa))))
(pc (- p pa tmpInt)))

(if (< pc .1)
(do ()

((>= pc .1))
(set! tmpInt (- tmpInt 1))
(set! pc (+ pc 1.0))))

(list tmpInt (/ (- (sin o) (sin (* o pc))) (sin (+ o (* o pc)))))))

(define (tuneIt f s1)
(let* ((p (/ (mus-srate) f)) ;period as float

(s (if (= s1 0.0) 0.5 s1))
(o (hz->radians f))
(vals (getOptimumC s o p))
(T1 (car vals))
(C1 (cadr vals))
(vals1 (getOptimumC (- 1.0 s) o p))
(T2 (car vals1))
(C2 (cadr vals1)))

(if (and (not (= s .5))
(< (abs C1) (abs C2)))

(list (- 1.0 s) C1 T1)
(list s C2 T2))))

(let* ((vals (tuneIt freq weighting))
(wt0 (car vals))
(c (cadr vals))
(dlen (caddr vals))
(lf (if (= lossfact 0.0) 1.0 (min 1.0 lossfact)))
(wt (if (= wt0 0.0) 0.5 (min 1.0 wt0)))
(tab (make-vct dlen))
;; get initial waveform in "tab" -- here we can introduce 0’s to simulate
;; different pick positions, and so on -- see the CMJ article for

112 Source Codes

;; numerous extensions. The normal case is to load it with white
;; noise (between -1 and 1).
(allp (make-one-zero (* lf (- 1.0 wt)) (* lf wt)))
(feedb (make-one-zero c 1.0)) ;or (feedb (make-one-zero 1.0 c))
(ctr 0))

(range i 0 dlen
(vct-set! tab i (- 1.0 (random 2.0))))

(sound :dur dur:-s
(let ((val (vct-ref tab ctr))) ;current output value
(vct-set! tab ctr (* (- 1.0 c)

(one-zero feedb
(one-zero allp val))))

(set! ctr (+ ctr 1))
(if (>= ctr dlen) (set! ctr 0))
(out (* amp val)))))))

;; Midi synthesizer (plays in the background all the time)
(gen-sound
(Seq (In (softsynth))

(Par (Fx-ctrl 0.3 0.04 (Reverb 0.03))
(Fx-ctrl 0.3 0.04 (Reverb 0.31))))))

(define midi-filename "/gammelhd/gammelhd/home/kjetil/mus220c/sinclair.MID")

(begin
(system (<-> "aplaymidi --port=129 " midi-filename ""))
(sleep 3) ;; wait for reverb and decay
(rte-silence!)
(tar_bench_print (get_last_rt_heap))
(tar_end_fragmentation_analysis (get_last_rt_heap)))

A.2 Transport Stack 113

A.2 Transport Stack

struct stack:
start
curr
end

struct tr_stack:
reader
writer
size

tr_stack_create(size):
tr_stack = sys_alloc(sizeof(struct tr_stack_owner))
tr_stack.size = size

tr_stack.writer = sys_alloc(sizeof(struct stack))
tr_stack.reader = sys_alloc(sizeof(struct stack))

tr_stack.writer.start = sys_alloc(size)
tr_stack.writer.curr = tr_stack.writer.start
tr_stack.writer.end = tr_stack.writer.curr + size

tr_stack.reader.start = sys_alloc(size)
tr_stack.reader.curr = tr_stack.reader.start
tr_stack.reader.end = tr_stack.reader.start // (nothing to read yet)

return tr_stack

// Must not be called unless stack_space(tr_stack.reader)==0
tr_stack_switch_buffer(tr_stack):

temp = tr_stack.writer
tr_stack.writer = tr_stack.reader
tr_stack.reader = temp

tr_stack.reader.end = tr_stack.reader.curr
tr_stack.reader.curr = tr_stack.reader.start

tr_stack.writer.end = tr_stack.writer.start + tr_stack.size
tr_stack.writer.curr = tr_stack.writer.start

(code continues on next page)

114 Source Codes

stack_write(stack,size):
ret = stack.pos
stack.pos += size
return ret

// (Exactly similar to stack_write)
stack_read(stack,size):

ret = stack.pos
stack.pos += size
return ret

stack_space(stack):
return stack.end-arb.stack

A.3 Interruptible Locks 115

A.3 Interruptible Locks

struct ilock:
lock
please_pause
is_pausing
go

create_ilock():
ilock = sys_alloc(sizeof(struct ilock))
ilock.lock = LOCK_INIT
ilock.is_pausing = false
ilock.please_pause = false
ilock.go = SEMAPHORE_INIT(0)

ilock1_lock(ilock):
lock(ilock.lock)

ilock1_unlock(ilock):
ilock.is_pausing=false
unlock(ilock.lock)

ilock1_pause(ilock):
if ilock.please_pause==true:

ilock.is_pausing=true
unlock(ilock.lock)
wait(ilock.go)
lock(ilock.lock)

ilock2_lock(ilock):
ilock.please_pause=true
lock(ilock.lock)

ilock2_unlock(ilock):
ilock.please_pause=false
unlock(ilock.lock)
if ilock.is_pausing==true:

signal(ilock.go)

116 Source Codes

A.4 A program for finding p(m, t, c)

#define CPU MHZ 2667

#define GNU SOURCE
#include <s td i o . h>

#include <s t r i n g . h>

#include <s t d l i b . h>

#include <uni s td . h>

#include <s tdboo l . h>

#include <pthread . h>

#include <sched . h>

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Global v a r i a b l e s ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
stat ic double program star t ;
stat ic int heap s i z e ;
stat ic int test num ;
stat ic int num disturbance threads ;
stat ic double busy l engths [NUM TESTS] = {

0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 , 3 . 5 , 4 . 0 , 4 . 5 ,
5 . 0 , 5 . 5 , 6 . 0 , 6 . 5 , 7 . 0 , 7 . 5 , 8 . 0 , 8 . 5 , 9 . 0 , 9 . 5 ,
10 . 0 , 15 . 0 , 20 . 0 , 25 . 0 , 30 . 0 , 35 . 0 , 40 . 0 , 45 . 0 ,
50 . 0 , 55 . 0 , 60 . 0 , 65 . 0 , 70 . 0 , 75 . 0 , 80 . 0 , 85 . 0 , 90 . 0 , 95 . 0 , 100.0

} ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ S t a t i s t i c s ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#define MAX NUM SAMPLES (1024∗1024∗10)
#define NUM TESTS 38

stat ic double s t a t s [MAX NUM SAMPLES] ;
stat ic int stat num =0;

stat ic int double compare (const void ∗a , const void ∗b){
const double ∗da = a ;
const double ∗db = b ;
return ∗da > ∗db ;

}

stat ic void g e t s t a t i s t i c s (double ∗min , double ∗q1 , double ∗median , double ∗q3 , double ∗max){
int n=stat num ;
qsor t (s tats , n , s izeof (double) , double compare) ;
∗min = s t a t s [0] ;
∗q1 = s t a t s [(int) ((n+1)/4)] ; //approx enough
∗median = s t a t s [(int) ((n+1)/2)] ; //approx enough
∗q3 = s t a t s [(int) (3∗ (n+1)/4)] ; // approx enough
∗max = s t a t s [n−1] ;

}

A.4 A program for finding p(m, t, c) 117

stat ic void add sample (double sample){
s t a t s [stat num++]=sample ;

}

stat ic void r e s e t s t a t i s t i c s (void){
memset(s tats , 0 ,MAX NUM SAMPLES∗ s izeof (double)) ;
stat num =0;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Threads and t iming ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
stat ic void bound thread to cpu (int cpu){

c pu s e t t s e t ;
CPU ZERO(&se t) ;
CPU SET(cpu ,& s e t) ;
p t h r e ad s e t a f f i n i t y np (p th r e ad s e l f () , s izeof (c pu s e t t) , &s e t) ;

}

stat ic int s e t p t h r e a d p r i o r i t y (pthr ead t pthread , int po l i cy , int p r i o r i t y){
struct sched param par ={0};
par . s c h ed p r i o r i t y=p r i o r i t y ;

i f ((pthread setschedparam (pthread , po l i cy , &par)) != 0) {
abort () ;
return 0 ;

}
return 1 ;

}

stat ic void s e t r e a l t im e (int type , int p r i o r i t y){
s e t p t h r e a d p r i o r i t y (p t h r e ad s e l f () , type , p r i o r i t y) ;

}

// Copied from the JACK source . (h t t p ://www. jackaudio . org)
typedef int Atomic word ;
stat ic i n l i n e Atomic word a t t r i b u t e ((unus ed))

exchange and add (volat i le Atomic word∗ mem , int v a l)
{

register Atomic word r e s u l t ;
a sm v o l a t i l e (” l ock ; xaddl %0,%1”

: ”=r” (r e s u l t) , ”=m” (∗ mem)
: ”0” (v a l) , ”m” (∗ mem)) ;

return r e s u l t ;
}

stat ic i n l i n e int a tom i c add ge t o l dva l (int ∗mem, int i nc){
return exchange and add (mem, inc) ; //

}

#i f de f ined (i 3 8 6)
// Also copied from the JACK source
typedef unsigned long long c y c l e s t ;
stat ic i n l i n e c y c l e s t g e t c y c l e s (void){

unsigned long long r e t ;
a sm v o l a t i l e (” r d t s c ” : ”=A” (r e t)) ;

return r e t ;
}
#endif

118 Source Codes

stat ic double get ms (void){
#i f de f ined (x86 64)

struct t imespec t s ;
c l o ck ge t t ime (CLOCKMONOTONIC, &t s) ;
return t s . t v s e c ∗ 1000.0 + ((double) t s . t v n s e c) / 1000000 .0 ;

#else

return ((double) g e t c y c l e s ()) / (1000 . 0∗ (double)CPU MHZ) ;
#endif

}

// c l e a r memory manually to make sure the memory i s proper ly
// a l l o c a t e d and in cache .
stat ic void∗ my ca l l oc (s i z e t s i ze1 , s i z e t s i z e 2){

s i z e t s i z e=s i z e 1 ∗ s i z e 2 ;
void∗ r e t=mal loc (s i z e) ;

i f (r e t==NULL){
abort () ;

}

memset(ret , 0 , s i z e) ;
return r e t ;

}

int between (int s tar t , int end){
int l en = end−s t a r t ;
int s i z e = rand()% len ;
return s t a r t+s i z e ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Disturbance threads ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int num di s turbance thr eads s tar ted = 0 ;
char ∗from mem ;
char ∗to mem ;
int mem size ;
bool run d i s turbance=true ;
pthr ead t thr eads [200]={0} ;

stat ic void ∗ di s turbance thr ead (void ∗ arg){
int thread num = atom i c add ge t o l dva l (&num di s turbance thr eads s tar ted , 1) ;
int cpu = (thread num%3)+1; // cpu=1,2 or 3 . (The t e s t i s run on cpu 0 .)

i f (test num==2){
bound thread to cpu (cpu) ;
s e t r e a l t im e (SCHED FIFO, 6 0) ;
p r i n t f (” Star ted d i s turbance thread on CPU %d\n” , cpu) ;

}

i f (test num==1){
int max size = 8192∗16;
while (run d i s turbance){

int s t a r t = between (1 , mem size−max size −10);
int end = between (s tar t , s t a r t+max s ize) ;
memcpy(to mem+star t , from mem+star t , end−s t a r t) ;

}
} else {

A.4 A program for finding p(m, t, c) 119

int mem size =20∗1014∗1024;
void ∗from mem = my ca l l oc (1 , mem size) ;
void ∗to mem = my ca l l oc (1 , mem size) ;
while (run d i s turbance){

memcpy(to mem , from mem , mem size) ;
us l eep (1) ; // Must s l e e p a l i t t l e b i t to avoid crash ing computer .

}
}

p r i n t f (”Disturbance thread %d f i n i s h ed \n” , cpu) ;
return NULL;

}

void s t a r t d i s t u r b an c e t h r e ad s (int num){
int i ;

mem size = 80∗1024∗1024;
from mem = my ca l l oc (1 , mem size) ;
to mem = my ca l l oc (1 , mem size) ;

for (i =0; i<num; i++){
pth r ead c r ea t e (&threads [i] ,NULL, d i s turbance thr ead ,NULL) ;

}
while (num di s turbance thr eads s tar ted <num)

s l e ep (1) ;
}

void s t op d i s tu r bance th r ead s (int num){
int i ;
r un d i s turbance=f a l s e ;
for (i =0; i<num; i++){

pthr ead cance l (thr eads [i]) ;
p th r ead j o i n (thr eads [i] ,NULL) ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Test snapshot performance . ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
f loat MB per ms (double ms){

return (((double) h eap s i z e) / ms) / (1024 . 0∗102 4 . 0) ;
}

stat ic void ∗ snapshot thr ead (void ∗ arg){
int cpu = 0 ;
void ∗from mem = my ca l l oc (1 , h eap s i z e) ;
void ∗to mem = my ca l l oc (1 , h eap s i z e) ;

bound thread to cpu (cpu) ;

i f (from mem==NULL | | to mem==NULL){
f p r i n t f (s tder r , ”Out o f memory f o r s i z e %d on cpu %d\n” , heap s i ze , cpu) ;
f r e e (from mem) ;
f r e e (to mem) ;
return NULL;

}

s e t r e a l t im e (SCHED FIFO , 6 0) ; // jack thread p r i o r i t y
us l eep (2 0) ;

120 Source Codes

double ve r y s ta r t=get ms () ;
double bes t t ime = 0 . 0 ;
double worst t ime = 0 . 0 ;

for (; ;) {
double s t a r t=get ms () ;
memcpy(to mem , from mem , heap s i z e) ;
double time=get ms ()− s t a r t ;

add sample (time) ;

i f (bes t t ime==0.0 | | time<bes t t ime)
bes t t ime=time ;

i f (time>worst t ime)
worst t ime=time ;

i f (s tar t −ve r y s ta r t > 1000)
break ;

u s l eep (1 0) ; // This i s : 1 . R e a l i s t i c
// 2. Necessary to avoid s t a l l i n g the computer .

}

f p r i n t f (s tder r ,
” s i z e : %d , cpu : %d . Best : %f (% f MB/ms) , Worst : %f (% f MB/ms)\n” ,
heap s i ze , cpu ,
(f loat) best t ime , (f loat) MB per ms (bes t t ime) ,
(f loat) worst t ime , (f loat) MB per ms (worst t ime)) ;

f r e e (from mem) ;
f r e e (to mem) ;

return NULL;
}

void pe r f o rm te s t (){
pthr ead t thread ={0};

p th r ead c r ea t e (&thread ,NULL, snapshot thread ,NULL) ;
p th r ead j o i n (thread ,NULL) ;

s l e ep (1) ;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Run t e s t s . ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int main (int argc , char ∗∗ argv){

int i ;
double min , q1 , median , q3 ,max ;

FILE ∗ f i l e = NULL;

test num = ato i (argv [1]) ;

i f (test num==0)
f i l e = fopen (”/tmp/ snapshot cpu1 . s t a t s ” , ”w”) ;

else i f (test num==1){
f i l e = fopen (”/tmp/ snapshot cpu4 . s t a t s ” , ”w”) ;
num disturbance threads = 40 ;

} else i f (test num==2){

A.4 A program for finding p(m, t, c) 121

f i l e = fopen (”/tmp/ snapshot cpu4r t . s t a t s ” , ”w”) ;
num disturbance threads = 3 ;

} else {
f i l e = fopen (”/tmp/ snapshot extra . s t a t s ” , ”w”) ;
num disturbance threads = 3 ;
test num=2;

}

f p r i n t f (f i l e ,
”# 1 . s i z e \ t 2 . min \ t 4 . q1 \ t 6 . ”
”median \ t 8 . q3 \ t 10 . max \n”
”# (3 ,5 , 7 , 9 and 11 are MB/ms)\n”) ;

s t a r t d i s t u r b an c e t h r e ad s (num disturbance threads) ;

for (i =0; i<NUM TESTS; i++){
heap s i z e=(int) (busy l engths [i] ∗ 1024 . 0∗1024 . 0) ;
r e s e t s t a t i s t i c s () ;
p e r f o rm te s t () ;
g e t s t a t i s t i c s (&min,&q1 ,&median ,&q3 ,&max) ;
f p r i n t f (f i l e , ”%f \ t %f %f \ t %f %f \ t %f %f \ t %f %f \ t %f %f \n” ,

((f loat) (h eap s i z e)) / (1024 . 0∗1024 . 0) ,
min , MB per ms (min) ,
q1 , MB per ms (q1) ,
median , MB per ms (median) ,
q3 , MB per ms (q3) ,
max , MB per ms (max)) ;

}

s t op d i s tu r bance th r ead s (num disturbance threads) ;

f c l o s e (f i l e) ;
return 0 ;

}

122 Source Codes

A.5 A program for finding p(M)

#define NUM CPUS 4
#define CPU MHZ 2667

#define GNU SOURCE
#include <s t d l i b . h>

#include <pthread . h>

#include <s td i o . h>

#include <errno . h>

#include <s t r i n g . h>

#include <sys / types . h>

#include <uni s td . h>

#include <sched . h>

#include <s tdboo l . h>

stat ic s i z e t h eap s i z e = 50 ∗ 1024 ∗ 1024;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Threads and t iming ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#i f de f ined (i 3 8 6)
// Also copied from the JACK source
typedef unsigned long long c y c l e s t ;
stat ic i n l i n e c y c l e s t g e t c y c l e s (void){

unsigned long long r e t ;
a sm v o l a t i l e (” r d t s c ” : ”=A” (r e t)) ;

return r e t ;
}
#endif

stat ic double get ms (void){
#i f de f ined (x86 64)

struct t imespec t s ;
c l o ck ge t t ime (CLOCKMONOTONIC, &t s) ;
return t s . t v s e c ∗ 1000.0 + ((double) t s . t v n s e c) / 1000000 .0 ;

#else

return ((double) g e t c y c l e s ()) / (1000 . 0∗ (double)CPU MHZ) ;
#endif

}

stat ic void bound thread to cpu (int cpu){
c pu s e t t s e t ;
CPU ZERO(&se t) ;
CPU SET(cpu ,& s e t) ;
p t h r e ad s e t a f f i n i t y n p (p th r e ad s e l f () , s izeof (c pu s e t t) , &s e t) ;

}

stat ic int s e t p t h r e a d p r i o r i t y (pthr ead t pthread , int po l i cy , int p r i o r i t y){
struct sched param par ={0};
par . s c h ed p r i o r i t y=p r i o r i t y ;

i f ((pthread setschedparam (pthread , po l i cy , &par)) != 0) {
abort () ;
return 0 ;

}
return 1 ;

}

A.5 A program for finding p(M) 123

stat ic void s e t r e a l t im e (int type , int p r i o r i t y){
s e t p t h r e a d p r i o r i t y (p t h r e ad s e l f () , type , p r i o r i t y) ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ buzy threads . ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// These threads prevent s o thers from
// using the memory bus
stat ic void ∗busy thread (void ∗ arg){

int cpu = (int) arg ;
bound thread to cpu (cpu) ;
s e t r e a l t im e (SCHED FIFO , 1) ;
while (t rue){

asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;
asm v o l a t i l e (”nop”) ;

}
return NULL;

}

void s t a r t bu sy th r ead s (void){
stat ic bool s t a r t ed=f a l s e ;
int cpu ;
i f (s t a r t ed==f a l s e){

for (cpu=1;cpu<NUM CPUS; cpu++){
pthr ead t ∗ thread=c a l l o c (s izeof (pthr ead t) , 1) ;
p th r ead c r ea t e (thread ,NULL, busy thread , (void∗) cpu) ;

}
s t a r t ed=true ;

}
}

// c l e a r memory manually to make sure the memory i s proper ly
// a l l o c a t e d and in cache .
stat ic void∗ my ca l l oc (s i z e t s i ze1 , s i z e t s i z e 2){

s i z e t s i z e=s i z e 1 ∗ s i z e 2 ;
void∗ r e t=mal loc (s i z e) ;

i f (r e t==NULL){
f p r i n t f (s tder r , ” my ca l l oc : mal loc returned NULL. ”) ;
abort () ;

}

memset(ret , 0 , s i z e) ;
return r e t ;

}

124 Source Codes

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Find p(M) ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// Cal l ed (once) from gc thread
stat ic long double ca l cu l a t e snap sho t t ime (void){

double snapshot t ime = 0 . 0 ;
void ∗ from = my ca l l oc (1 , h eap s i z e) ;
void ∗ to = my ca l l oc (1 , h eap s i z e) ;

bound thread to cpu (0) ;
us l eep (1) ;

int n ;
int i ;

for (n=0;n<2;n++){
p r i n t f (”Test %d/2\n” ,n+1);
double ve r y s ta r t=get ms () ;
s e t r e a l t im e (SCHED OTHER, 0) ;
for (i =0; ; i++){

double s t a r t=get ms () ;
memcpy(to , from , heap s i z e) ;
double time=get ms()− s t a r t ;
i f (snapshot t ime==0.0 | | time<snapshot t ime)

snapshot t ime=time ;
double s o f a r = star t −ve r y s ta r t ;
i f (s o f a r > 40000)

break ;
i f (s o f a r > 10000 && s o f a r < 20000)

s e t r e a l t im e (SCHED RR, 2) ;
else i f (s o f a r > 20000 && s o f a r < 30000)

s e t r e a l t im e (SCHED FIFO , 1 0) ;
else i f (s o f a r > 30000)

s e t r e a l t im e (SCHED FIFO , 7 0) ;
us l eep ((int) time) ;

}
s t a r t bu sy th r ead s () ;

}

p r i n t f (” snapshot time : %fms (% f MB/ms) . S i z e : %d\n” ,
(f loat) snapshot t ime ,
(f loat) (h eap s i z e / snapshot t ime) / (1024 . 0∗1024 . 0) ,
h eap s i z e
) ;

s e t r e a l t im e (SCHED OTHER, 0) ;
return ((long double) h eap s i z e) / (((long double) snapshot t ime) ∗ 1024.0 ∗ 1 0 2 4 . 0) ;

}

int main (int argc , char ∗∗ argv){
p r i n t f (”\n\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ n”) ;
p r i n t f (”This program c a l c u l a t e s snapshot performance : \n\n”) ;
p r i n t f (” 1 . Make sur e you are root . \n”) ;
p r i n t f (” 2 . No other programs should run whi le running t h i s program .\n”) ;
p r i n t f (” 3 . Snapshot performance i s s tor ed in %s . (MB/ms)\n” , argv [1]) ;
p r i n t f (” ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ n\n”) ;
long double r e s u l t = ca l cu l a t e snap sho t t ime () ;
FILE ∗ f i l e = fopen (argv [1] , ”w”) ;
f p r i n t f (f i l e , ”%Lf\n” , r e s u l t) ;
f c l o s e (f i l e) ;
return 0 ;

}

125

B
Benchmark Data

B.1 Snapshot Benchmark Data

p(M) / Realtime kernel
5.450805 MB/ms

p(M) / Non-Realtime kernel
5.502967 MB/ms

p(m,t,0) and p(m,t,3)
Generated figures for the data are shown in the subsequent pages. Fol-
lowing the figures are two additional tables. These tables contain data
which were outside the range of the figures.

126 Benchmark Data

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 5

 10

 15

 20

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.1: p(m, t, 0). Realtime kernel

B.1 Snapshot Benchmark Data 127

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.2: p(m, t, 3). Realtime kernel

128 Benchmark Data

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,3)

p(m,t,0)

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,3)

p(m,t,0)

Figure B.3: p(m, t, 0) and p(m, t, 3). Realtime kernel

B.1 Snapshot Benchmark Data 129

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.4: p(m, t, 3)RT . Realtime kernel

130 Benchmark Data

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,0)

p(m,t,3)RT

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,0)

p(m,t,3)RT

Figure B.5: p(m, t, 0) and p(m, t, 3)RT . Realtime kernel

B.1 Snapshot Benchmark Data 131

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 5

 10

 15

 20

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.6: p(m, t, 0). Non-Realtime kernel

132 Benchmark Data

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.7: p(m, t, 3). Non-Realtime kernel

B.1 Snapshot Benchmark Data 133

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,0)

p(m,t,3)

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quantiles for 4 CPUs

Quantiles for 1 CPU

Figure B.8: p(m, t, 0) and p(m, t, 3). Non-Realtime kernel

134 Benchmark Data

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

Quartiles

Figure B.9: p(m, t, 3)RT . Non-Realtime kernel

B.1 Snapshot Benchmark Data 135

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,0)

p(m,t,3)RT

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Heap size (MB)

p(m,t,0)

p(m,t,3)RT

Figure B.10: p(m, t, 0) and p(m, t, 3)RT . Non-Realtime kernel

136 Benchmark Data

Heap Size Best Case Quartile 1 Median Quartile 3 Worst Case

0.5 0.044684 0.201513 0.205722 0.21049 0.244741
1.0 0.090766 0.406673 0.413744 0.421105 0.62399
1.5 0.319624 0.892018 0.898487 0.905492 0.94508
2.0 0.88051 1.226379 1.233897 1.240819 2.477854
2.5 0.777489 1.534247 1.543069 1.551792 1.58024
3.0 1.808099 1.842202 1.851516 1.860313 5.693626
3.5 2.111952 2.150712 2.160019 2.168696 2.200864
4.0 2.429752 2.454577 2.464789 2.473356 2.505039
4.5 2.716735 2.760598 2.771154 2.781588 2.833629
5.0 3.023424 3.063772 3.074317 3.084277 4.312876
5.5 3.319325 3.370697 3.380964 3.390649 3.423952
6.0 3.629555 3.675982 3.690821 3.701101 3.740403
6.5 3.957912 3.98929 4.001467 4.016013 4.042112
7.0 4.22996 4.292955 4.306593 4.318083 4.353545
7.5 4.556502 4.596762 4.61305 4.628151 4.662857
8.0 4.851208 4.914616 4.929897 4.943724 4.982634
8.5 5.158074 5.218149 5.230617 5.246788 5.278299
9.0 5.470835 5.52381 5.537683 5.556325 5.593056
9.5 5.770604 5.830955 5.845609 5.860472 5.904267

10.0 6.073251 6.13068 6.14882 6.162698 6.196844
15.0 9.149275 9.201794 9.219796 9.24055 9.287625
20.0 12.215006 12.275261 12.307864 12.323943 58.405504
25.0 15.277174 15.345837 15.372462 15.392052 40.446793
30.0 18.331121 18.420441 18.455696 18.484811 18.552087
35.0 21.405816 21.469818 21.499729 21.533324 21.590359
40.0 24.453881 24.524445 24.567339 24.6013 24.700613
45.0 27.51315 27.631313 27.673245 27.701242 29.002815
50.0 30.625432 30.71071 30.767115 30.815633 30.911777
55.0 33.696726 33.81747 33.855549 33.895666 77.83564
60.0 36.74775 36.826682 36.866575 36.90428 36.966305
65.0 39.863466 39.948586 39.980855 40.009263 40.07049
70.0 42.85882 42.966028 43.020448 43.063043 43.184481
75.0 46.027232 46.084153 46.119159 46.156846 96.207538
80.0 49.045 49.171403 49.211934 49.268954 49.321261
85.0 52.16315 52.237321 52.286238 52.355175 52.392466
90.0 55.182439 55.27874 55.331759 55.362017 55.547447
95.0 58.293465 58.322847 58.411871 58.525462 71.417632

100.0 61.394761 61.487336 61.547231 61.632222 62.867169

Table B.1: p(m, t, 3)RT . Realtime kernel

B.1 Snapshot Benchmark Data 137

Heap Size Best Case Quartile 1 Median Quartile 3 Worst Case

0.5 0.119428 0.12969 0.133911 0.141659 0.182272
1.0 0.268068 0.322256 0.327864 0.336085 0.470315
1.5 0.411181 0.501039 0.509233 0.518935 0.805754
2.0 0.83359 0.911063 0.935347 0.953201 1.036556
2.5 1.053996 1.164268 1.181555 1.202127 1.322605
3.0 1.276522 1.377848 1.404454 1.427671 1.576648
3.5 1.529345 1.619013 1.648051 1.67324 1.76612
4.0 1.753401 1.840711 1.873677 1.903075 2.023181
4.5 1.979419 2.059194 2.087064 2.115564 2.232987
5.0 2.225145 2.29575 2.327579 2.360214 2.489712
5.5 2.382325 2.477716 2.516738 2.56424 2.693243
6.0 2.64749 2.732299 2.760987 2.789467 2.926828
6.5 2.83771 2.919603 2.953132 2.983222 3.087096
7.0 2.996878 3.107895 3.149925 3.185415 3.332329
7.5 3.185212 3.335675 3.386033 3.421975 3.510083
8.0 3.497617 3.610984 3.649939 3.683468 3.852473
8.5 3.725207 3.815484 3.85415 3.892898 4.000653
9.0 3.962811 4.064238 4.102174 4.142302 52.099063
9.5 4.135174 4.221416 4.260215 4.293364 40.747177

10.0 4.378015 4.479449 4.510159 4.55127 30.151489
15.0 6.493906 6.588685 6.613612 6.648272 18.881081
20.0 8.857371 8.932548 8.982968 9.011471 9.124744
25.0 10.756475 10.891002 10.936092 11.000027 11.208493
30.0 13.152494 13.225758 13.273104 13.320987 13.451196
35.0 14.937004 15.142429 15.19983 15.248663 15.475206
40.0 17.519118 17.699605 17.763825 17.829237 18.087501
45.0 19.236299 19.478394 19.571739 19.684045 19.905904
50.0 22.3575 22.5081 22.616673 22.744249 22.940387
55.0 23.493413 23.649004 23.729114 23.884909 69.48738
60.0 26.251881 26.469786 26.629803 26.721885 31.308868
65.0 27.630792 27.839276 27.897934 27.998989 28.175497
70.0 30.905873 31.058561 31.179959 31.26528 31.419917
75.0 32.085084 32.426483 32.487429 32.5861 32.695523
80.0 36.205265 36.416786 36.516823 36.647598 83.829661
85.0 36.24527 36.52975 36.704472 36.81466 39.155691
90.0 39.438141 39.620114 39.759124 39.830983 40.005963
95.0 40.784065 40.930771 41.021931 41.106647 41.184951

100.0 44.68979 44.857 44.993319 45.098891 91.644479

Table B.2: p(m, t, 3)RT . Non-Realtime kernel

138 Benchmark Data

B.2 Garbage Collection Benchmark Data

Total Minimum Average Maximum #

snapshot length (kB) 236160 1024 3936 4096 60
audio (ms) 10285.524414 0.388883 0.989849 3.168003 10391
alloc (ms) 8.119198 0.000009 0.000042 0.005393 193751
free (ms) 20.542446 0.000025 0.000084 0.003853 243381

sweep (ms) 25.273035 0.000123 0.002432 0.027715 10390
mark (ms) 339.094635 0.020556 0.065273 0.199261 5195

roots snapshot (ms) 9.528028 0.001452 0.001834 0.012814 5195
partial snapshot (ms) 22.562778 0.000798 0.004393 0.010203 5136

full snapshot (ms) 43.393547 0.719588 0.735484 0.746814 59

Table B.3: Rollendurch. Test 1

Total Minimum Average Maximum #

snapshot length (kB) 235888 1024 3931 4096 60
audio (ms) 10246.692383 0.386956 0.987728 3.150688 10374
alloc (ms) 7.626374 0.000009 0.000039 0.023655 193681
free (ms) 20.106043 0.000021 0.000083 0.003868 243235

sweep (ms) 30.126350 0.000124 0.002904 0.021929 10374
mark (ms) 394.431549 0.023856 0.076042 0.224829 5187

roots snapshot (ms) 10.912249 0.001573 0.002104 0.027582 5187
partial snapshot (ms) 23.870722 0.000853 0.004655 0.009941 5128

full snapshot (ms) 43.488136 0.733704 0.737087 0.747361 59

Table B.4: Rollendurch. Test 2

B.2 Garbage Collection Benchmark Data 139

Total Minimum Average Maximum #

snapshot length (kB) 237392 1648 3956 4096 60
audio (ms) 10258.189453 0.389287 0.989123 3.166529 10371
alloc (ms) 7.803329 0.000009 0.000040 0.025569 193663
free (ms) 20.294376 0.000022 0.000083 0.005390 243194

sweep (ms) 30.426102 0.000141 0.002935 0.031786 10368
mark (ms) 372.616241 0.021354 0.071878 0.209482 5184

roots snapshot (ms) 10.316799 0.001506 0.001990 0.018997 5184
partial snapshot (ms) 24.075989 0.000840 0.004698 0.010431 5125

full snapshot (ms) 43.287762 0.716754 0.733691 0.740760 59

Table B.5: Rollendurch. Test 3

Total Minimum Average Maximum #

snapshot length (kB) 234752 1024 3912 4096 60
audio (ms) 10264.081055 0.387004 0.989309 3.153840 10375
alloc (ms) 8.278701 0.000010 0.000043 0.014266 193667
free (ms) 20.637423 0.000019 0.000085 0.004409 243225

sweep (ms) 30.093145 0.000121 0.002901 0.023183 10374
mark (ms) 358.098297 0.021017 0.069038 0.218958 5187

roots snapshot (ms) 9.307538 0.001450 0.001794 0.027978 5187
partial snapshot (ms) 23.157463 0.000810 0.004516 0.012048 5128

full snapshot (ms) 43.181957 0.712121 0.731898 0.741024 59

Table B.6: Rollendurch. Test 4

Total Minimum Average Maximum #

snapshot length (kB) 235088 1024 3918 4096 60
audio (ms) 10267.342773 0.389080 0.989623 3.155974 10375
alloc (ms) 7.988904 0.000009 0.000041 0.033227 193693
free (ms) 20.622456 0.000022 0.000085 0.003561 243251

sweep (ms) 31.494452 0.000124 0.003036 0.030742 10374
mark (ms) 367.501099 0.021045 0.070850 0.201266 5187

roots snapshot (ms) 9.986195 0.001468 0.001925 0.016564 5187
partial snapshot (ms) 24.250828 0.000798 0.004729 0.010016 5128

full snapshot (ms) 43.427841 0.726436 0.736065 0.746623 59

Table B.7: Rollendurch. Test 5

140 Benchmark Data

Total Minimum Average Maximum #

audio (ms) 10250.626953 0.388990 0.988203 3.158262 10373
alloc (ms) 8.411024 0.000010 0.000043 0.005000 193679
free (ms) 20.516733 0.000025 0.000084 0.004039 243229

sweep (ms) 24.981117 0.000097 0.002408 0.017209 10374
mark (ms) 350.102631 0.023651 0.067496 0.178047 5187

Table B.8: Mark-and-sweep. Test 1

Total Minimum Average Maximum #

audio (ms) 10270.765625 0.385986 0.990049 3.167598 10374
alloc (ms) 8.677264 0.000009 0.000045 0.017737 193673
free (ms) 20.499599 0.000025 0.000084 0.003661 243228

sweep (ms) 28.433460 0.000099 0.002740 0.017347 10376
mark (ms) 376.455780 0.025758 0.072563 0.317276 5188

Table B.9: Mark-and-sweep. Test 2

Total Minimum Average Maximum #

audio (ms) 10276.000977 0.384526 0.990553 3.166785 10374
alloc (ms) 8.346857 0.000009 0.000043 0.014776 193673
free (ms) 20.288712 0.000024 0.000083 0.003579 243219

sweep (ms) 30.474638 0.000114 0.002938 0.019921 10374
mark (ms) 366.550751 0.023624 0.070667 0.207243 5187

Table B.10: Mark-and-sweep. Test 3

Total Minimum Average Maximum #

audio (ms) 10264.071289 0.390728 0.988832 3.162604 10380
alloc (ms) 8.186666 0.000009 0.000042 0.014115 193709
free (ms) 20.535469 0.000028 0.000084 0.003715 243291

sweep (ms) 29.888170 0.000111 0.002879 0.019555 10382
mark (ms) 367.544586 0.023667 0.070804 0.314230 5191

Table B.11: Mark-and-sweep. Test 4

B.2 Garbage Collection Benchmark Data 141

Total Minimum Average Maximum #

audio (ms) 10263.000000 0.388877 0.989300 3.162440 10374
alloc (ms) 8.146610 0.000009 0.000042 0.022571 193703
free (ms) 20.668045 0.000025 0.000085 0.003882 243257

sweep (ms) 31.732052 0.000111 0.003059 0.021273 10374
mark (ms) 369.281708 0.023198 0.071194 0.186257 5187

Table B.12: Mark-and-sweep. Test 5

142 BIBLIOGRAPHY

Bibliography

[AEL88] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent col-
lection on stock multiprocessors. SIGPLAN Not., 23(7):11–20,
1988.

[Bak78] Henry G. Baker, Jr. List processing in real time on a serial com-
puter. Commun. ACM, 21(4):280–294, 1978.

[Bak92] Henry G. Baker. The treadmill: real-time garbage collection
without motion sickness. SIGPLAN Not., 27(3):66–70, 1992.

[Bak94] Henry G. Baker. Minimizing reference count updating with de-
ferred and anchored pointers for functional data structures. SIG-
PLAN Not., 29(9):38–43, 1994.

[BCR03] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent utilization.
In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 285–
298, New York, NY, USA, 2003. ACM.

[Ble10] Tim Blechmann. Supernova, a multiprocessor-aware synthesis
server for SuperCollider. Proceedings of the Linux Audio Confer-
ence 2010, pages 141–146, 2010.

[BM03] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior refer-
ence counting: fast garbage collection without a long wait. SIG-
PLAN Not., 38(11):344–358, 2003.

BIBLIOGRAPHY 143

[Boe] H.-J. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[Boe02] Hans-J. Boehm. Bounding space usage of conservative garbage
collectors. SIGPLAN Not., 37(1):93–100, 2002.

[BR01] David F. Bacon and V. T. Rajan. Concurrent Cycle Collection
in Reference Counted Systems. In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming,
pages 207–235, London, UK, 2001. Springer-Verlag.

[Bro84] Rodney A. Brooks. Trading data space for reduced time and
code space in real-time garbage collection on stock hardware. In
LFP ’84: Proceedings of the 1984 ACM Symposium on LISP and
functional programming, pages 256–262, New York, NY, USA,
1984. ACM.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an
uncooperative environment. Softw. Pract. Exper., 18(9):807–820,
1988.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Com-
mun. ACM, 13(11):677–678, 1970.

[Col60] George E. Collins. A method for overlapping and erasure of lists.
Commun. ACM, 3(12):655–657, 1960.

[Con63] Melvin E. Conway. Design of a separable transition-diagram com-
piler. Communications of the ACM, 6(7):396–408, 1963.

[CR91] William Clinger and Jonathan Rees. Revised Report (4) On The
Algorithmic Language Scheme, 1991.

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: an exercise
in cooperation. Commun. ACM, 21(11):966–975, 1978.

[DN66] O.-J. Dahl and K. Nygaard. SIMULA: an ALGOL-based sim-
ulation language. Communications of the ACM, 9(9):671–678,
1966.

[FOL02] Dominique Fober, Yann Orlarey, and Stephane Letz. Lock-Free
Techniques for Concurrent Access to Shared Objects. Actes des
Journes dInformatique Musicale JIM2002, Marseille, pages 143-
150, 2002.

144 BIBLIOGRAPHY

[FY69] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-
collector for virtual-memory computer systems. Commun. ACM,
12(11):611–612, 1969.

[Gra06] Martin Grabmüller. Implementing Closures using Run-time Code
Generation. Technische Universität Berlin, research report, 2006.

[Har93] M. G. Harbour. Real-time POSIX: an Overview. In VVConex 93
International Conference, Moscu, June 1993., 1993.

[Hen94] R. Henriksson. Scheduling Real Time Garbage Collection. In
Proceedings of NWPER’94, Nordic Workshop on Programming
Environment Research, pages 253–266, 1994.

[HM01] Richard L. Hudson and J. Eliot B. Moss. Sapphire: copying GC
without stopping the world. In JGI ’01: Proceedings of the 2001
joint ACM-ISCOPE conference on Java Grande, pages 48–57,
New York, NY, USA, 2001. ACM.

[JS83] David A. Jaffe and Julius O. Smith. Extensions of the Karplus-
Strong Plucked-String Algorithm. Computer Music Journal,
7(2):56–69, 1983.

[JW99] Mark S. Johnstone and Paul R. Wilson. The memory fragmen-
tation problem: solved? SIGPLAN Not., 34(3):26–36, 1999.

[Kac10] John Kacur. Real-Time Kernel For Audio and Visual Applica-
tions. Proceedings of the Linux Audio Conference 2010, pages
57–64, 2010.

[LFO05] S. Letz, D. Fober, and Y. Orlarey. jackdmp: Jack server for multi-
processor machines. Proceedings of the Linux Audio Conference
2010, pages 29–37, 2005.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):419–429,
1983.

[LP06] Yossi Levanoni and Erez Petrank. An on-the-fly reference-
counting garbage collector for java. ACM Trans. Program. Lang.
Syst., 28(1):1–69, 2006.

BIBLIOGRAPHY 145

[Mat10] Kjetil Matheussen. Implementing a Polyphonic MIDI Software
Synthesizer using Coroutines, Realtime Garbage Collection, Clo-
sures, Auto-Allocated Variables, Dynamic Scoping, and Continu-
ation Passing Style Programming. Proceedings of the Linux Audio
Conference 2010, pages 7–15, 2010.

[McC60] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, Part I. Commun. ACM, 3(4):184–
195, 1960.

[Min63] Marvin Minsky. A LISP Garbage Collector Algorithm Using Se-
rial Secondary Storage. Technical report, Cambridge, MA, USA,
1963.

[MRCR04] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A New
Dynamic Memory Allocator for Real-Time Systems. In ECRTS
’04: Proceedings of the 16th Euromicro Conference on Real-Time
Systems, pages 79–86, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[MRR+08] M. Masmano, I. Ripoll, J. Real, A. Crespo, and A. J. Wellings.
Implementation of a constant-time dynamic storage allocator.
Softw. Pract. Exper., 38(10):995–1026, 2008.

[Nie77] Norman R. Nielsen. Dynamic memory allocation in computer
simulation. Commun. ACM, 20(11):864–873, 1977.

[NO93] Scott Nettles and James O’Toole. Real-time replication garbage
collection. SIGPLAN Not., 28(6):217–226, 1993.

[ON94] James O’Toole and Scott Nettles. Concurrent replicating garbage
collection. In LFP ’94: Proceedings of the 1994 ACM conference
on LISP and functional programming, pages 34–42, New York,
NY, USA, 1994. ACM.

[PFPS07] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steens-
gaard. Stopless: a real-time garbage collector for multiprocessors.
In ISMM ’07: Proceedings of the 6th international symposium on
Memory management, pages 159–172, New York, NY, USA, 2007.
ACM.

[Pir98] Pekka P. Pirinen. Barrier techniques for incremental tracing. In
ISMM ’98: Proceedings of the 1st international symposium on

146 BIBLIOGRAPHY

Memory management, pages 20–25, New York, NY, USA, 1998.
ACM.

[POS90] System Application Program Interface (API) [C Language].
Information technology—Portable Operating System Interface
(POSIX). 1990.

[PPS08] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of
concurrent real-time garbage collectors. In PLDI ’08: Proceed-
ings of the 2008 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 33–44, New York, NY,
USA, 2008. ACM.

[RRR97] Gustavo Rodriguez-Rivera and Vincent F. Russo. Nonintrusive
cloning garbage collection with stock operating system support.
Softw. Pract. Exper., 27(8):885–904, 1997.

[RWRF09] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Pre-
cise garbage collection for C. In ISMM ’09: Proceedings of the
2009 international symposium on Memory management, pages
39–48, New York, NY, USA, 2009. ACM.

[Sch94] W. Schottstaedt. Machine Tongues XVII: CLM: Music V Meets
Common Lisp. Computer Music Journal, 18(2):30–37, 1994.

[Sie10] Fridtjof Siebert. Concurrent, parallel, real-time garbage-
collection. In ISMM ’10: Proceedings of the 2010 international
symposium on Memory management, pages 11–20, New York,
NY, USA, 2010. ACM.

[Sis] Jeffrey Mark Siskind. Stalin - a STAtic Language Implementa-
tioN, http://cobweb.ecn.purdue.edu/~qobi/software.html.

[SOLF03] Nicolas Scaringella, Yann Orlarey, Stephane Letz, and Dominique
Fober. Automatic vectorization in Faust. Actes des Journes
d’Informatique Musicale JIM2003, Montbeliard - JIM, 2003.

[Ste75] Guy L. Steele, Jr. Multiprocessing compactifying garbage collec-
tion. Commun. ACM, 18(9):495–508, 1975.

[TS08] Tian Tian and Chiu-Pi Shih. Software Tech-
niques for Shared-Cache Multi-Core Systems, In-
tel Knowledge Base, http://software.intel.com/en-us/articles/

software-techniques-for-shared-cache-multi-core-systems/, 2008.

BIBLIOGRAPHY 147

[Uni97] The Single UNIX Specification, Version 2. The Open Group,
Woburn, MA., 1997.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques.
In IWMM ’92: Proceedings of the International Workshop on
Memory Management, pages 1–42, London, UK, 1992. Springer-
Verlag.

[WJ93] Paul R. Wilson and Mark S. Johnstone. Real-Time Non-Copying
Garbage Collection. ACM OOPSLA Workshop on Memory Man-
agement and Garbage Collection, 1993.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles. Dynamic Storage Allocation: A Survey and Critical Re-
view. In IWMM ’95: Proceedings of the International Work-
shop on Memory Management, pages 1–116, London, UK, 1995.
Springer-Verlag.

CONSERVATIVE GARBAGE COLLECTORS FOR REALTIME AUDIO

PROCESSING

Kjetil Matheussen

Norwegian Center for Technology in Music and the Arts. (NOTAM) ∗

k.s.matheussen@notam02.no

ABSTRACT

Garbage-producing and efficient programming languages

such as Haskell, Lisp or ML have traditionally not been used

for generating individual samples in realtime. The reason is

a lack of garbage collector fast and predictably enough to

make these languages viable alternatives to C and C++ for

high performing audio DSP. This paper shows how conser-

vative garbage collectors can be used efficiently for realtime

audio signal processing.

Two new garbage collectors are described. The first col-

lector can easily replace garbage collectors in many existing

programming languages and has successfully been used for

the Stalin Scheme implementation. The second garbage col-

lector has a higher memory overhead and requires a simple

write barrier, but does not restrain the amount of memory.

Both collectors find garbage by running a parallel mark-

and-sweep on snapshots. The snapshot buffers are either

copied to between soundcard interrupts or filled up by write

barriers. To ensure predictability, worst-case is simulated

about once a second, and all running garbage collectors are

synchronized to avoid more than one garbage collector to

block audio simultaneously. High performance is maintained

since the collectors should not interfere with inner audio

loops. Benchmarks also show that overhead can be minimal.

1. INTRODUCTION

It is common for music programming systems to provide

pre-programmed sound generators which process blocks of

samples at a time, called “block processing”. Block pro-

cessing makes it possible to achieve high sample throughput

without using low-level languages such as C or C++. Con-

trolling the graph of generators either happens in a separate

process (SuperCollider3 [8]), or by performing smaller jobs

in between computing blocks (Pure Data [9]).

However, only being able to process blocks of samples

is sometimes limiting. This paper describes two garbage col-

lectors supporting hard realtime computation of individual

samples in high-level languages such asHaskell, Lisp orML.

Some relevant properties for realtime audio processing:

∗ Also; Department of Informatics, University of Oslo.

1. The only deadline is the next soundcard interrupt, mean-

ing that it’s only important to compute sound fast enough.

Events generated by the keyboard or other sources do not

require other immediate response than the change in sound

they might cause, and therefore these events can be re-

corded in an external process not requiring garbage collec-

tion. The audio process runs at regular intervals, processing

blocks of samples, and handles the events recorded by the

external process since last time. To achieve perfect accu-

racy, the events can be timestamped.

2. Audio processing algorithms are usually small and require

relatively little pointer-containing memory (most allocated

memory is usually sample buffers). Moreover, in music

programming systems, it is common to run many smaller

jobs simultaneously. These jobs are commonly called “in-

struments”. The amount of memory per heap is reduced if

each instrument uses its own heap.

3. Audio often runs on a general computer where it’s not known

beforehand how many programs are running at once or how

they may use a garbage collector. Therefore, excessive

CPU usage can stack up in unpredictable ways between

soundcard interrupts. One way to avoid this is to let all pro-

grams have strict constant CPU usage, where best-case is

always equal to worst-case. Another way is to synchronize

programs so that only one program uses excessive CPU at

a time.

4. Audio often involves interaction with a user, either by writ-

ing code which performs music directly [3], or by making

applications which depend on user input. Either way, it is

usually not possible to interact very well with programs if

the computer uses more than about 80% CPU time, since

GUI processes, keyboard input, etc. do not respond very

fast then. This leaves about 20% CPU time, which can

be used occasionally by audio code without increasing the

chance of glitches in sound or destroy interactivity.

5. Realtime garbage collectors commonly guarantee a fixed

number of milliseconds of worst-case execution time. But

for audio processing, it may also be necessary for the user

to immediately (i.e. within a second or so) know the con-

sequence of the worst-case. If not, unpredictable sound

glitches may occur.

For example, if a DSP code uses a constant 80% CPU, there

will be a glitch in sound if the collector uses more than 20%

CPU within one audio block. If using more than 20% CPU

only about once an hour, the user would have to test at least

an hour to be comfortable that the code runs properly.

Not being immediately sure whether there will be enough

CPU is unfortunate since music programming is often ex-

perimental, where the user doesn’t want to think too much

about whether the code will always run properly. And when

performing live, perhaps even writing code on stage, it’s not

always an option to test first. And furthermore, as per point

3, it becomes harder to know how CPU usage between si-

multaneously running programs may add up if some of the

programs have a non-immediate worst-case.

1.1. Conservative Garbage Collectors

Both collectors described in this paper are conservative. A

conservative garbage collector considers all memory posi-

tions in the root set or heap as potentially containing a pointer.

When considering all memory positions as potentially hold-

ing a pointer, the code interfacing the collector becomes si-

mpler since it can avoid defining exact pointer positions, whi-

ch also makes it easier to replace garbage collectors in al-

ready existing language implementations. For audioDSP, th-

is also means that inner audio loops should run unmodified.

Many language implementations, such as Stalin Scheme,

Bigloo Scheme, D, and Mono are using a conservative

garbage collector, very often the Boehm-Demers-Weiser

garbage collector (BDW-GC) [4]. And since the garbage

collector often is the biggest (perhaps also the only) hin-

drance for realtime usage, it becomes relatively simple to

enable these languages to produce audio reliably in realtime.

It is however questionable whether a conservative col-

lector can guarantee hard realtime behavior. There are two

reasons why it might not: (1) Fragmentation can cause pro-

grams to run out of memory prematurely. (2) Values in

memory misinterpreted as pointers (false pointers) can cause

unreferenced memory not to be reclaimed. However, false

pointers is unlikely to be a problem on machines with 32 bit

or higher address space, and fragmentation can be prevented

from becoming a problem by using a safety buffer.

2. A SIMPLE CONSERVATIVE GARBAGE

COLLECTOR FOR AUDIO PROCESSING

There are two basic ideas:

1. Simulating worst-case

To achieve a constant execution time and a predictable

overhead, the collector is forced to spend worst-case

amount of time between blocks.

2. Finding garbage in a parallel thread

By finding garbage in a parallel lower-priority thread, the

only critical operation is preparing for a parallel garbage

collection. Simulating worst-case only by preparing a

parallel collection can be both reliable and simple.

2.1. The Basic Technique

The collector works by first allocating a fixed size heap small

enough to be fully copied within this time frame:

m− s (1)

where m is the duration of one audio buffer, and s is the time

a program uses to process all samples in that block of audio.

This heap is used for storing pointer-containing memory. To

achieve a consistent CPU usage during the lifetime of a pro-

gram, its size can not be increased.

’m−s’ means that the size of the pointer-containing heap

is restricted by the speed of the computer and audio latency.

However, since audio data do not contain pointers, alloca-

tion of for instance delay lines or FFT data is not restricted.

Such data can instead be allocated from a separate heap

which does not have to be copied.

Copying the pointer-containing heap within the ’m− s’

time frame is called “taking snapshot”. After taking a snap-

shot, an independently running lower-priority thread is sig-

naled. The lower-priority thread then finds garbage by run-

ning a mark-and-sweep on the snapshot.

Program 1 Basic version
1 mark-and-sweep thread()

2 loop forever

3 wait for mark-and-sweep semaphore

4 run mark and sweep on snapshot

5

6 audio function()

7 produce audio

8 if mark-and-sweep is waiting then

9 copy heappointers and roots to snapshot

10 if there might be garbage then

11 signal mark-and-sweep semaphore

12 endif

13 else

14 copy heappointers and roots to a dummy-snapshot

15 endif

Program 1 shows what has been described so far. (Keep

in mind that Program 1 is only ment as a simple overview of

the basic technique. It has a few shortcomings and problems

which are addressed later in this paper.)

Some comments on Program 1:

• “audio function()” on line 6 is called at regular intervals

to process one block of audio.

• On line 14, the heap is copied to a “dummy-snapshot”.

Copying to a dummy snapshot is necessary to ensure a

constant overhead and to avoid invalidating the real snap-

shot while the garbage collector is running.

Alternatively, we could tell the operating system to sleep

instead of copying to a dummy snapshot, so that other

programs could run in the mean time. However, to avoid

waiting too long or too short, the sleeping function would

need to provide sub-ms accuracy, which is not always

available.

• The check for “if there might be garbage” could for in-

stance be performed by checking the amount of allocated

memory since last collection. This check is not required

for correct operation, but lowers overall CPU usage.

• The “mark-and-sweep” thread (our “lower-priority thread”)

should run with a lower priority than the audio thread so

that it won’t steal time from the audio function. But, this

thread still needs to run with realtime priority or a very

high priority, so that GUI updates etc. can not delay mem-

ory from being reclaimed.

If instruments or applications depend on each other, for

example if one instrument produces audio used by a subse-

quent reverberation instrument, performance can increase if

the snapshot is taken in parallel, as shown in Program 2.

Program 2 Parallel snapshot
mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark and sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if mark-and-sweep is waiting then

copy heappointers and roots to snapshot

if there might be garbage then

signal mark-and-sweep semaphore

else

copy heappointers and roots to dummy-snapshot

endif

signal audio function semaphore

audio function()

wait for audio function semaphore

produce audio

signal snapshot semaphore

2.2. Memory Overhead

The size of the snapshot and the dummy-snapshot is equal

to the heap. When running only one instrument, which re-

quires its own snapshot and dummy snapshot, the memory

usage will triple. But, when several instruments uses the

same garbage collector, where each of them have its own

heap, and only one instrument runs a garbage collection at a

time, the overhead becomes

n+2

n
(2)

where n is the number of instruments.

3. SYNCHRONIZING GARBAGE COLLECTORS

The solution proposed so far is not ideal. Firstly, it’s not ob-

vious how to create an algorithm to get consistant execution

times for taking snapshots if more than one garbage collec-

tor is running at the same time. Secondly, taking full snap-

shots between the processing of every audio buffer wastes

a lot of CPU since it’s not always useful to collect garbage

that often, plus that only parts of the heap is normally used.

Thirdly, the very CPU-intensive use of a dummy snapshot

serves no other purpose than timing. To avoid these prob-

lems, all simultaneously running garbage collectors must be

synchronized. By making sure only one snapshot is taken

at a time on the computer, excessive CPU usage does not

stack up, and it becomes possible to reduce CPU usage in

manifold ways.

3.1. Non-Constant Overhead

By synchronizing garbage collectors (or by running only

one garbage collector at a time), the following optimizations

can be applied:

1. It is only necessary to take snapshot of the complete heap

about once a second (called “full snapshot”). In between,

only the used part(s) of the heap can be copied instead

(called “partial snapshot”). Since the soundcard buffer

is normally refilled somewhere between 50-1500 times a

second, this will eliminate most of the wasted CPU. The

user will still notice when the garbage collector spends too

much time, but now only once a second, which should be

good enough.

2. By making sure that snapshots are never taken two blocks

in a row, spare-time will be available both after producing

audio in the current block, and before producing audio in

the next. The time available for taking snapshots will now

be:

2∗ (m− s) (3)

where m is the duration of one audio buffer, and s is the

duration of processing the samples in that buffer.

3. In case producing audio for any reason takes longer time

than usual, which for instance can happen if creating sound

generators or initializing sample buffers, worst-case can

be lowered by delaying a new snapshot until the next block.

In case a snapshot on a heap not belonging to the current

program has already been initiated in the current block cy-

cle, that snapshot (plus its mark-and-sweep) can be can-

celled and the corresponding audio function can be told to

run without having to wait for the snapshot to finish.

An implementation of a “one-instance only” garbage col-

lector is shown in Program 3. Program 3 differs from one

being synchronized by how it decides whether to signal a

new garbage collection, and whether to do a full snapshot.

3.2. The Synchronization

There are two basic ways to synchronize garbage collec-

tors. The first way is to let the server select which client

is allowed to run a garbage collection in the current audio

buffer cycle. The second way is to let the server itself do the

garbage collection.

Advantages of letting the server itself do the garbage

collection are: (1) Lower memory overhead: Only one snap-

shot buffer is needed on the computer. (2) Only one mark-

and-sweep process is run simultaneously: Less code and

memory is used, which is better for the CPU cache. (3)

The garbage collector runs in a different memory environ-

ment: Making code simpler by automatically removing any

chance of false sharing.

One disadvantage of running the garbage collection on

a server is that it may have to use a large amount of shared

memory. To ensure high performance, shared memory will

be required both for the snapshot heap, roots, and perhaps

for communication between server and clients. Since shared

memory is often a limited resource, this could be a problem.

Program 3 Non-constant overhead
mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark and sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if at least one second since last full snapshot then

copy roots to snapshot

copy full heappointers to snapshot

if there might be garbage then

signal mark-and-sweep

else if there might be garbage then

copy roots to snapshot

copy partial heappointers to snapshot

signal mark-and-sweep

else

do nothing

endif

signal audio function

audio function()

wait for audio function semaphore

produce audio

if snapshot is waiting, and

mark-and-sweep is waiting, and

no snapshot was performed last time, and

it didn’t take a long time to produce audio

then

signal snapshot

else

signal audio function

endif

3.3. Memory Overhead

Since the garbage collector does not need to provide consis-

tent CPU overhead when being synchronized, the dummy

snapshot is not needed anymore. Therefore the memory

overhead now becomes:

n+1

n
(4)

where n is the number of heaps connected to or used by the

garbage collector. 1

4. IMPLEMENTATION OF

ROLLENDURCHMESSERZEITSAMMLER

Rollendurchmesserzeitsammler2 (Rollendurch) is a freely

available garbage collector for C and C++ which uses the

techniques described so far in this paper. Rollendurch is

also made to replace the BDW-GC collector [4] in exist-

ing language implementations. Although some of the more

advanced features in BDW-GC are missing, Rollendurch

is still successfully being used instead of BDW-GC in C

sources created by the Stalin Scheme compiler [10, 7].

1However, if running garbage collection on a server, it could be neces-

sary to add another snapshot plus another set of garbage collector threads

to avoid sometimes running both the audio thread and the garbage collector

on the same CPU or access the same snapshot from two different CPUs. In

that case, the memory overhead will be n+2
n

.
2
http://users.notam02.no/˜kjetism/rollendurchmesserzeitsammler/

4.1. Implementation Details

Achieving perfect realtime performance with modern gen-

eral computers is impossible. The reason is unpredictable

thread scheduling schemes, CPU caches, multiple proces-

sors and other factors caused by operating system and hard-

ware. Therefore, Rollendurch adds some extra logic to avoid

unpredictable execution times:

• After allocating memory, a pointer to the allocated mem-

ory block and its size are transported on a ringbuffer from

the audio thread to the garbage collector threads. No infor-

mation about the heap used by the garbage collector, such

as pointers to the next allocated memory block, is stored in

the heap itself. This not only prevents the garbage collector

thread from having to access the heap (which could gen-

erate unpredictable cache misses), but it also makes more

memory available in the heap and lowers snapshot time.

• Similarly, in order for sweep to avoid calling the free func-

tion in the memory manager when finding unreferenced

memory, sweep instead sends sizes and addresses on a

ringbuffer to a special “free thread”. The “free thread”

takes care of freeing memory and it is specified to run on

the same CPU as the audio thread, hence avoiding cache

misses caused by accessing the heap from another CPU.

• Since a conservative garbage collector is not always using

the same amount of memory every time a program is run,

and especially not in one where the garbage collection runs

in parallel with threads allocating memory, 3/4 of the heap

in Rollendurch is dedicated as a safety buffer. If a program

spends more than 1/4 of the heap, a window will appear

on the screen warning the user that the collector can not

guarantee hard realtime performance anymore. For exam-

ple, in a concert situation, if the program suddenly uses

slightly more than 1/4 of the heap (which can happen even

if the program had been previously tested not to use more

than 1/4), the performance of the garbage collector would

still be essentially the same and the collector would not

contribute to glitches in sound.

Only guaranteeing hard realtime performance for 1/4 of

the heap (and slightly above) also makes it possible to ac-

curately adjust the time it takes to simulate worst-case. In

Rollendurch, simulating worst-case happens by first copy-

ing 1/4 of the heap (or more in case more than 1/4 of the

heap is actually in use), and then continue copying the re-

maining heap in small parts as far as possible until a pre-

defined snapshot duration is reached. In other words, tak-

ing full snapshot also serves as a busy-loop timer. The

predefined snapshot duration is calculated at program ini-

tialization by running several full snapshots in a row and

returning the smallest duration of those. The ratio 1/4 was

selected based on observed variance in time taking snap-

shot.

• Although they have almost the same API, the mentioned

ringbuffers are not really ringbuffers, but a data structure

containing two stacks: One stack is used for reading and

the other for writing. The two stacks switch position at the

next garbage collection. Cache misses caused by transport-

ing information about allocated memory back and forth

between threads running on two different CPUs are now

limited to one occurrence per memory position between

each new garbage collection.

4.2. Memory Management

Program 4 shows the default memory manager. Since the

heaps can become extremely fragmented with this mem-

ory manager, Rollendurch also provides an option to use

the “Two Level Segregated Fit” memory manager (TLSF)

[6] instead. TLSF is a memory manager made for hard re-

altime operation which handles fragmentation much better,

but TLSF also spends a little bit more time allocating and

deallocating.

Program 4 The default memory manager
alloc(size)

if pools[size] != NULL then

return pop(pools[size])

else

freemem += size

return freemem-size

endif

free(mem, size)

if freemem-size == mem then

freemem -= size

else

push(mem, pools[size])

endif

4.3. Benchmarks

In these benchmarks, the results of Rollendurch is compared

with the results of a traditional mark-and-sweep collector.

The mark-and-sweep collector was made by slightly modi-

fying Rollendurch. (Compile time option: NO SNAPSHOT).

Both Rollendurch and the traditional mark-and-sweep col-

lector used the efficient memory manager in Program 4. Fur-

thermore, both garbage collectors also used large hash ta-

bles for storing pointers to allocated memory, which should

lower the blocking time for the mark-and-sweep collector.

Program 5Minimal MIDI player written for Stalin Scheme
(<rt-stalin> :runtime-checks #f

(while #t

(wait-midi :command note-on

(define phase 0.0)

(define phase-inc (hz->radians (midi->hz (midi-note))))

(define tone (sound

(out (* (midi-vol) (sin phase)))

(inc! phase phase-inc)))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

For the tests, a 3.10 minute longMIDI file3 was played using

Program 5. Program 5 is a Stalin Scheme program running

in the Snd-Rt music programming system [7]. The proces-

sor was a dual-core Intel T5600 processor (1833MHz) with

3http://www.midisite.co.uk/midi_search/malaguena.html

a shared 2MB of L2 cache running in 32 bit mode. The com-

puter used DDR2 memory running at 667MHz. The T5600

processor does not have an integrated memory controller,

which could have significantly increased the snapshot per-

formance. Time values were gathered using the CPU time

stamp counter (TSC), and all threads were running in re-

altime using either the SCHED FIFO or the SCHED RR

scheduling scheme. All threads were also locked to run on

one CPU only. The size of the pointer-containing heap was

set to 1MB. At most 2.8kB was allocated by the program

at any point in time, and a constant 8kB is allocated during

initialization by Snd-Rt for storing pointers to coroutines.

(Rollendurch should provide predictable performance up to

256kB when using a 1MB pointer-containing heap.) The

size of the non-pointer-containing heap was set to 4MB,

but the size of the non-pointer-containing heap should not

affect the performance in any way.

Mark-and-sweep Rollendurch

Min Avg. Max Min Avg. Max

0.00ms 0.03ms 0.16ms 0.02ms 0.03ms 0.10ms

Table 1. Blocking time during one audio buffer.

Table 1 shows the amount of time the garbage collector

blocks audio processing during one audio buffer. (For Rol-

lendurch, this is the time taking partial snapshot and root

snapshot, while for mark-and-sweep it is the time running

mark). Note that 80.5% (87.4ms out of 108.7ms) of the

time spent by Rollendurch was used taking snapshot of the

roots, which is a constant cost. Furthermore, Rollendurch

takes snapshot of the roots even when it is not necessary,

just to keep the CPU cache warm, while mark-and-sweep

never have to take snapshot of the roots.

Mark-and-sweep Rollendurch

Min Avg. Max Min Avg. Max

n/a n/a n/a 0.42ms 0.43ms 0.47ms

Table 2. Time simulating worst-case.

Table 2 shows the amount of time the collector blocks

audio processing during one audio buffer when simulating

worst-case. Simulating worst-case is required to achieve a

predictable performance and happens about once a second.

Simulating worst-case for mark-and-sweep has not been im-

plemented since it is not known how one would do that. But

if comparing the total time taking partial snapshot in Rol-

lendurch by the total time running mark in mark-and-sweep

(123.5ms
21.2ms

), worst-case for mark-and-sweep would be about

5.8 times higher than Rollendurch. Comparing worst-case

occurrences (instead of combined time) indicates that worst-

case for mark-and-sweep is about 6.5 times higher than Rol-

lendurch (0.156ms
0.0240ms

), but these numbers are more prone to

measurement errors than total time. Worst-case could also

be higher for mark-and-sweep since it’s unknown howmuch

extra time may be spent handling interior pointers (pointers

pointing inside a memory block), and howmuch extra mem-

ory may be unnecessarily scanned because of false point-

ers. However, it is problematic to base the the performance

of worst-case on the performance of non-worst-case since

worst-case is more likely to use memory not in the CPU

cache. Furthermore, mark-and-sweep probably spent a large

amount of time scanning roots, making it even harder to pre-

dict a worst-case.

Mark-and-sweep Rollendurch

3.15% (0.07%) 3.22% (0.16%)

Table 3. CPU usage to play the song.

Table 3 shows average CPU usage of the program to play

the song. The numbers in the parenthesis show the sepa-

rate CPU usage of the two garbage collectors only. Rollen-

durch used a bit more than twice as much CPU than Mark-

and-sweep, but 36.67% of Rollendurch ran in parallel. The

amount of time running in parallel would have been higher

if the program had used more memory. The program using

the mark-and-sweep collector also spent 46 more millisec-

onds to calculate the samples itself, which might be because

mark-and-sweep ran on the same CPU as the audio thread

and therefore could have cooled down the L1 cache.

The time data generated by running the benchmarks can

be downloaded from http://users.notam02.no/˜kjetism/

rollendurchmesserzeitsammler/icmc2009/

5. A GARBAGE COLLECTOR FOR AUDIO

PROCESSING, NOW WITH A WRITE BARRIER

There are a couple of limitations with the first garbage col-

lector:

1. Maximum heap size depends directly on the speed of the

computer and audio buffer size. If the audio buffer size is

reduced by two, the time available for taking a snapshot is

reduced by two as well.

2. If running out of memory, and the programmer increases

the size of the heap, then a larger part of the available time

within one audio buffer is spent taking snapshot, and the

time available for doing audio processing is reduced. To

avoid pre-allocating too much memory for safety, and not

waste CPU taking snapshot of the safety memory, it would

be preferable if the collector could monitor the heap and

automatically allocate more memory when there’s little left,

but then the CPU usage would be unpredictable.

This section presents a solution to these problems us-

ing a very simple write barrier plus increasing the memory

overhead. In this collector, taking a snapshot of the roots is

the only added cost between audio interrupts, which should

normally be a very light operation and also independent of

heap size. Furthermore, if memory is low, additional mem-

ory can be added to the collector during runtime without

also increasing worst-case (although the write barrier in Pro-

gram 7 needs to be extended a little bit first).

5.1. Implementation

To make the write barrier as efficient as possible, two ex-

tra memory blocks are used to store newly written heap-

pointers. These two memory blocks have the same size as

the heap and the snapshot. The write barrier writes to one

of these memory blocks (memblock wb), while the garbage

collector unloads pointers from the other (memblock gc).

The two memory blocks swap position before initiating a

new garbage collection.

Using this write barrier, writing a pointer to the heap

only requires two or three times as many instructions as be-

fore. (In addition, a couple of extra instructions are required

if it’s necessary to check whether the target address belongs

to the heap.)

Program 6 The second garbage collector
ps = sizeof(void*)

heappointers = calloc(ps,FULL_HEAP_SIZE)

snapshot = calloc(ps,FULL_HEAP_SIZE)

memblock_wb = calloc(ps,FULL_HEAP_SIZE)

memblock_gc = calloc(ps,FULL_HEAP_SIZE)

snap_offset = memblock_gc - heappointers

roots_snapshot = malloc(MAX_ROOT_SIZE)

dummy_roots_snapshot = malloc(MAX_ROOT_SIZE)

UNUSED = -1 // Could be NULL as well...

init()

start_lower_priority_thread(gc_thread)

for i = 0 to FULL_HEAP_SIZE do

memblock_gc[i] = UNUSED

memblock_wb[i] = UNUSED

unload_and_reset_memblock()

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

snapshot[i] = memblock_gc[i]

memblock_gc[i] = UNUSED

endif

gc_thread()

loop forever

wait for collector semaphore

unload_and_reset_memblock()

run_mark_and_sweep on snapshot

audio function()

produce audio

if collector is waiting and there might be garbage then

swap(&memblock_gc,&memblock_wb)

snap_offset = memblock_wb - heappointers
copy roots to roots_snapshot

signal collector

else

copy roots to dummy_roots_snapshot

endif

Program 7 The write barrier implemented in C
#define write_heap_pointer(MEMPOS,POINTER)do{ \
void* _gc_pointer=(void*)POINTER; \
char* _gc_mempos=(char*)MEMPOS; \

*((void**)(_gc_mempos+snap_offset)) = _gc_pointer; \

*((void**)_gc_mempos) = _gc_pointer; \
}while(0)

5.2. But what about the Cache?

Although writing pointers to the heap shouldn’t normally

happen inside inner audio loops, hence the additional num-

berof instructions executedby thewrite barrier shouldbe low,

performance could still be reduced since switching between

two memory blocks increases the chance of cache misses.

This is especially unfortunate in case “gc thread” runs on a

different CPU (to increase general performance) since mem-

ory then has to be transported from one cache to another.

A solution to the problem is using another thread for re-

setting memblock gc, one which is specified to run on the

same CPU as the audio function. By using a dedicated

reset thread, the garbage collector will never write to

memblock wb ormemblock gc, and nomemory block is writ-

ten to by more than one CPU. This scheme is implemented

in Program 8.

Unfortunately, switching between two memory blocks

can still cause cache misses, even on a single CPU. And fur-

thermore, the number of cache misses can increase if one

memory block hasn’t been used by the audio code for a

very long time. Program 8 also lowers the chance of unpre-

dictable cache misses by switching between memory blocks

as often as possible.

Another way to swap memory blocks more often is to

run mark-and-sweep in its own thread, and delay the un-

loading of newly written pointers by putting them on a tem-

porary buffer. Before initiating a new mark-and-sweep, the

pointers on the temporary buffer are copied into the snap-

shot, and the buffer is marked as clear. In case the temporary

buffer is full when unloading pointers, the garbage collec-

tor thread just waits until the mark-and-sweep thread is fin-

ished, and then writes to the snapshot directly. When writ-

ing to a temporary buffer instead, the memory blocks can

be switched even while mark-and-sweep is running. This

scheme is not implemented in Program 8.

However, swapping memory blocks frequently might not

be good enough, so future work is benchmarking other alter-

natives such as using a ringbuffer, a hash table, or a couple

of stacks to store newly written heap-pointers.

5.3. Memory Overhead

In this collector, the snapshot can not be shared between

several instruments since the content of the snapshot in the

previous collection is also being used in the current. One

of the memory blocks can however be shared since it’s only

used while initiating a new garbage collection, so the over-

head now becomes
n∗3+1

n
(5)

where n is the number of heaps connected to or used by the

garbage collector.

5.4. Write Barrier for the Roots

It is possible to avoid taking snapshot of the roots as well if

we also use write barriers when writing pointers to the roots.

However, since taking a snapshot of the roots shouldn’t nor-

mally take much time, and that the extra number of write

barriers higher the risk for some of them to occur inside

inner audio loops, overall performance could significantly

decrease.

On the other hand, by including the program stack in

the root set, a new garbage collection could be initiated any-

where in code and take virtually no time, making the collec-

tor capable of hard realtime also for other types of use.

Program 8 A more cache-friendly version
init()

start_lower_priority_thread(reset_memblock_thread)

start_lower_priority_thread(gc_thread)

set_cpu_affinity(0,reset_thread)

set_cpu_affinity(0,audio_thread)

set_cpu_affinity(1,gc_thread)

for i = 0 to FULL_HEAP_SIZE do

memblock_gc[i] = UNUSED

memblock_wb[i] = UNUSED

reset_memblock_thread()

loop forever

wait for reset semaphore

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

memblock_gc[i] = UNUSED

endif

unload_memblock()

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

snapshot[i] = memblock_gc[i]

endif

gc_thread()

loop forever

wait for collector semaphore

unload_memblock()

signal reset semaphore

if there might be garbage then

run_mark_and_sweep on snapshot

endif

audio function()

produce audio

if first time then

do nothing

else if the dummy snapshot was not used last time then

copy roots to dummy_roots_snapshot

else if collector is waiting, and reset is waiting, then

swap(&memblock_gc,&memblock_wb)

snap_offset = memblock_wb - heappointers
copy roots to roots_snapshot

signal collector

else if mark-and-sweep is using roots_snapshot then

copy roots to dummy_roots_snapshot

else

copy roots to roots_snapshot

endif

6. COMPARISON WITH EARLIER WORK

The author is not aware of any existing work on garbage

collectors specifically made for audio processing, but a few

general realtime garbage collectors have been used for audio

earlier.

James McCartney’s music programming system Super-

collider3 [8] implements the Johnstone-Wilson realtime col-

lector4 [5] to handle input events and control a sound graph.

However, the garbage collector in Supercollider3 is not used

by the program producing samples, only by the program

controlling the sound graph.

Vessel [11] is a system running running on top of the Lua

programming language (http://www.lua.org). Lua has an in-

cremental garbage collector, and contrary to Supercollider3,

this collector runs in the same process as the one generating

samples. It might also be possible to edit individual samples

in realtime in Vessel.

The Metronome garbage collector [2, 1] provides an in-

terface to define how much time can be spent by the collec-

tor within specified time intervals, hence the name “Metro-

nome”. This interface makes it possible to configure the

4This according to an Internet post by James McCartney.
(http://lambda-the-ultimate.org/node/2393)

Metronome collector to use a specified amount of time in

between soundcard interrupts, similar to the collectors de-

scribed in this paper. However, the Metronome collector is

only available for Java, and it requires a read barrier. It is

also uncertain how consistent the CPU usage of this collec-

tor is. For instance, in [1] it is said that:

“an MMU of 70% with a 10 ms time window means

that for any 10 ms time period in the program’s exe-

cution, the application will receive at least 70% of the

CPU time (i.e., at least 7 ms)”

The collectors described in this paper either guarantee a con-

stant overall CPU time, or a guarantee that the user immedi-

ately will discover the consequence of only getting a certain

amount of CPU. Furthermore, theMetronome collector does

not seem to synchronize simultaneously running collectors

to avoid worst-case behaviors to stack up unpredictably.

7. CONCLUSION

This paper has presented two garbage collectors especially

made for high performing realtime audio signal processing.

Both garbage collectors address two properties: 1. The user

needs to immediately know the consequence of worst-case

execution time. 2. Several applications may run simultane-

ously, all sharing common resources and producing samples

within the same time intervals.

The first garbage collector can relatively easily replace

garbage collectors in many existing programming languages,

and has successfully been used for the Stalin Scheme imple-

mentation. The second garbage collector requires at least

twice as much memory, and a very simple write barrier. But

on the plus side, the second garbage collector does not re-

strain the amount of memory, and its write barrier is only

lightly used. The second collector can also be extended to

work with other types of realtime tasks. Ways to make the

collectors more cache-friendly have been discussed as well.

Benchmarks show that conservative garbage collectors

can be used in programs generating individual samples in

realtime without notable loss in performance, at the price

of high memory overhead if only one instrument is running.

Furthermore, taking snapshots doesn’t take much time, and

using pointer-containing heaps in the range of 10MB to

100MB probably works on newer computers without set-

ting high audio latency. (The memory bandwidth of an Intel

Core i7 system is 25.6GB/s, while the computer running the

benchmarks performed at 2.4GB/s.) Considering the 2.8kB

of pointer-containing memory used by the MIDI synthe-

sizer, 100MB should cover most needs. Furthermore, the

limiting factor is memory bandwidth, which can relatively

easily increase in future systems, e.g. by using wider buses.

As a final note, since realtime video signal processing is

similar to audio in which a fixed amount of data is produced

at regular intervals, the same techniques described in this

paper should work for video processing as well.

8. ACKNOWLEDGMENT

Many thanks to David Jeske, Jøran Rudi, Henrik Sundt,

Anders Vinjar and Hans Wilmers for comments and sugges-

tions. A special thanks to Cristian Prisacariu for helping to

get the paper on a better track in the early stage of writing.

Also many thanks to all the anonymous reviewers from the

ISMM2009 conference5 and this ICMC conference.

9. REFERENCES

[1] J. Auerbach, D. F. Bacon, F. Bömers, and P. Cheng,

“Real-time Music Synthesis In Java Using The

Metronome Garbage Collector,” in Proceedings of the

International Computer Music Conference, 2007.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan, “A real-time

garbage collector with low overhead and consistent uti-

lization.” ACM Press, 2003, pp. 285–298.

[3] A. Blackwell and N. Collins, “The programming lan-

guage as a musical instrument,” in In Proceedings of

PPIG05 (Psychology of Programming Interest Group,

2005, pp. 120–130.

[4] H.-J. Boehm, “A garbage collector for C and C++,”

http://www.hpl.hp.com/personal/Hans Boehm/gc/.

[5] M. S. Johnstone, A. Paul, and R. Wilson, “Non-

compacting memory allocation and real-time garbage

collection,” Tech. Rep., 1997.

[6] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF:

A new dynamic memory allocator for real-time sys-

tems,” in ECRTS ’04: Proceedings of the 16th Euromi-

cro Conference on Real-Time Systems. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 79–86.

[7] K. Matheussen, “Realtime music programming using

Snd-Rt,” in Proceedings of the International Computer

Music Conference, 2008, pp. 379–382.

[8] J. McCartney, “Rethinking the computer music lan-

guage: Supercollider,” Computer Music Journal,

vol. 26, no. 2, pp. 61–68, 2002.

[9] M. Puckette, “Max at Seventeen,” Computer Music

Journal, vol. 26, no. 4, pp. 31–43, 2002.

[10] J. M. Siskind, Stalin - a STAtic Language Implementa-

tioN, http://cobweb.ecn.purdue.edu/∼qobi/software.html.

[11] G. D. Wakefield, “Vessel: A Platform for Computer

Music Composition,” Master’s thesis, Media Arts &

Technology program, University of California Santa

Barbara, USA, 2007.

5A prior version of this paper was submitted to ISMM2009.

Implementing a Polyphonic MIDI Software Synthesizer using
Coroutines, Realtime Garbage Collection, Closures,

Auto-Allocated Variables, Dynamic Scoping, and Continuation
Passing Style Programming

Kjetil Matheussen
Norwegian Center for Technology in Music and the Arts. (NOTAM)

k.s.matheussen@notam02.no

Abstract

This paper demonstrates a few programming tech-
niques for low-latency sample-by-sample audio pro-
gramming. Some of them may not have been used
for this purpose before. The demonstrated tech-
niques are: Realtime memory allocation, realtime
garbage collector, storing instrument data implicitly
in closures, auto-allocated variables, handling signal
buses using dynamic scoping, and continuation pass-
ing style programming.

Keywords

Audio programming, realtime garbage collection,
coroutines, dynamic scoping, Continuation Passing
Style.

1 Introduction

This paper demonstrates how to implement a
MIDI software synthesizer (MIDI soft synth)
using some unusual audio programming tech-
niques. The examples are written for Snd-RT
[Matheussen, 2008], an experimental audio pro-
gramming system supporting these techniques.
The techniques firstly emphasize convenience
(i.e. few lines of code, and easy to read and
modify), and not performance. Snd-RT1 runs
on top of Snd2 which again runs on top of the
Scheme interpreter Guile.3 Guile helps gluing
all parts together.

It is common in music programming only to
compute the sounds themselves in a realtime
priority thread. Scheduling new notes, alloca-
tion of data, data initialization, etc. are usually
performed in a thread which has a lower prior-
ity than the audio thread. Doing it this way
helps to ensure constant and predictable CPU
usage for the audio thread. But writing code
that way is also more complicated. At least,
when all samples are calculated one by one. If

1http://archive.notam02.no/arkiv/doc/snd-rt/
2http://ccrma.stanford.edu/software/snd/
3http://www.gnu.org/software/guile/guile.html

however the programming only concerns han-
dling blocks of samples where we only control a
signal graph, there are several high level alter-
natives which makes it relatively easy to do a
straightforward implementation of a MIDI soft
synth. Examples of such high level music pro-
gramming systems are SuperCollider [McCart-
ney, 2002], Pd [Puckette, 2002], CSound4 and
many others.

But this paper does not describe use of block
processing. In this paper, all samples are in-
dividually calculated. The paper also explores
possible advantages of doing everything, alloca-
tion, initialization, scheduling, etc., from inside
the realtime audio thread.

At least it looks like everything is performed
inside the realtime audio thread. The under-
lying implementation is free to reorganize the
code any way it wants, although such reorga-
nizing is not performed in Snd-RT yet.

Future work is making code using these tech-
niques perform equally, or perhaps even better,
than code where allocation and initialization of
data is explicitly written not to run in the real-
time audio thread.

2 MIDI software synthesizer

The reason for demonstrating a MIDI soft synth
instead of other types of music programs such
as a granular synthesis generator or a reverb, is
that the behavior of a MIDI soft synth is well
known, plus that a MIDI soft synth contains
many common challenges in audio and music
programming:

1. Generating samples. To hear sound, we
need to generate samples at the Audio
Rate.

2. Handling Events. MIDI data are read at a
rate lower than the audio rate. This rate is
commonly called the Control Rate.

4http://www.csound.com

3. Variable polyphony. Sometimes no notes
are playing, sometimes maybe 30 notes are
playing.

4. Data allocation. Each playing note re-
quires some data to keep track of frequency,
phase, envelope position, volume, etc. The
challenges are; How do we allocate memory
for the data? When do we allocate memory
for the data? How do we store the memory
holding the data? When do we initialize
the data?

5. Bus routing. The sound coming from the
tone generators is commonly routed both
through an envelope and a reverb. In ad-
dition, the tones may be autopanned, i.e.
panned differently between two loudspeak-
ers depending on the note height (similar
to the direction of the sound coming from
a piano or a pipe organ).

3 Common Syntax for the Examples

The examples are written for a variant of
the programming language Scheme [Steele and
Sussman, 1978]. Scheme is a functional lan-
guage with imperative operators and static
scoping.

A number of additional macros and special
operators have been added to the language, and
some of them are documented here because of
the examples later in the paper.

(<rt-stalin>...) is a macro which first trans-
forms the code inside the block into clean
R4RS code [Clinger and Rees, 1991] un-
derstood by the Stalin Scheme compiler.5

(Stalin Scheme is an R4RS compiler). Af-
ter Stalin is finished compiling the code, the
produced object file is dynamically linked
into Snd-RT and scheduled to immediately
run inside the realtime audio thread.

(define-stalin signature ...) defines variables
and functions which are automatically in-
serted into the generated Stalin scheme
code if needed. The syntax is similar to
define.

(spawn ...) spawns a new coroutine [Conway,
1963; Dahl and Nygaard, 1966]. Corou-
tines are stored in a priority queue and it is
not necessary to explicitly call the spawned

5Stalin - a STAtic Language ImplementatioN,
http://cobweb.ecn.purdue.edu/ qobi/software.html.

coroutine to make it run. The spawned
coroutine will run automatically as soon6

as the current coroutine yields (by calling
yield or wait), or the current coroutine
ends.

Coroutines are convenient in music pro-
gramming since it often turns out practi-
cal to let one dedicated coroutine handle
only one voice, instead of mixing the voices
manually. Furthermore, arbitrarily placed
pauses and breaks are relatively easy to im-
plement when using coroutines, and there-
fore, supporting dynamic control rate simi-
lar to ChucK [Wang and Cook, 2003] comes
for free.

(wait n) waits n number of frames before con-
tinuing the execution of the current corou-
tine.

(sound ...) spawns a special kind of coroutine
where the code inside sound is called one
time per sample. (sound coroutines are
stored in a tree and not in a priority queue
since the order of execution for sound
coroutines depends on the bus system and
not when they are scheduled to wake up.)

A simple version of the sound macro,
called my-sound, can be implemented like
this:

(define-stalin-macro (my-sound . body)
‘(spawn

(while #t
,@body
(wait 1))))

However, my-sound is inefficient compared
to sound since my-sound is likely to do
a coroutine context switch at every call
to wait.7 sound doesn’t suffer from this
problem since it is run in a special mode.
This mode makes it possible to run tight
loops which does not cause a context switch
until the next scheduled event.

(out <channel> sample) sends out data to
the current bus at the current time. (the
current bus and the current time can be
thought of as global variables which are im-
plicitly read from and written to by many

6Unless other coroutines are placed earlier in the
queue.

7I.e. if two or more my-sound blocks or sound blocks
run simultaneously, and at least one of them is a my-

sound block, there will be at least two coroutine context
switches at every sound frame.

operators in the system)8 By default, the
current bus is connected to the sound card,
but this can be overridden by using the
in macro which is explained in more de-
tail later.

If the channel argument is omitted, the
sample is written both to channel 0 and 1.

It makes sense only to use out inside a
sound block. The following example plays
a 400Hz sine sound to the sound card:

(<rt-stalin>
(let ((phase 0.0))

(sound
(out (sin phase))
(inc! phase (hz->radians 400)))))

(range varname start end ...) is a simple lo-
op iterator macro which can be imple-
mented like this:9

(define-macro (range varname start end . body)
(define loop (gensym))
‘(let ,loop ((,varname ,start))

(cond ((<,var ,end)
,@body
(,loop (+ ,varname 1))))))

(wait-midi :options ...) waits until MIDI data
is received, either from an external inter-
face, or from another program.

wait-midi has a few options to specify the
kind of MIDI data it is waiting for. In the
examples in this paper, the following op-
tions for wait-midi are used:

:command note-on
Only wait for a note on MIDI message.

:command note-off
Only wait for a note off MIDI mes-
sage.

:note number
Only wait for a note which has MIDI
note number number.

Inside the wait-midi block we also have
access to data created from the incom-
ing midi event. In this paper we use
(midi-vol) for getting the velocity (con-
verted to a number between 0.0 and 1.0),
and (midi-note) for getting the MIDI
note number.

8Internally, the current bus is a coroutine-local vari-
able, while the current time is a global variable.

9The actual implementation used in Snd-RT also
makes sure that “end” is always evaluated only one time.

:where is just another way to declare local
variables. For example,

(+ 2 b
:where b 50)

is another way of writing

(let ((b 50))
(+ 2 b))

There are three reason for using :where
instead of let. The first reason is that
the use of :where requires less parenthe-
sis. The second reason is that reading the
code sometimes sounds more natural this
way. (I.e “add 2 and b, where b is 50” in-
stead of “let b be 50, add 2 and b”.) The
third reason is that it’s sometimes easier
to understand the code if you know what
you want to do with a variable, before it is
defined.

4 Basic MIDI Soft Synth

We start by showing what is probably the sim-
plest way to implement a MIDI soft synth:

(range note-num 0 128

(<rt-stalin>

(define phase 0.0)

(define volume 0.0)

(sound

(out (* volume (sin phase))))

(inc! phase (midi->radians note-num)))

(while #t

(wait-midi :command note-on :note note-num

(set! volume (midi-vol)))

(wait-midi :command note-off :note note-num

(set! volume 0.0))))

This program runs 128 instruments simul-
taneously. Each instrument is responsible for
playing one tone. 128 variables holding volume
are also used for communicating between the
parts of the code which plays sound (running at
the audio rate), and the parts of the code which
reads MIDI information (running at the control
rate10).

There are several things in this version which
are not optimal. Most important is that you

10Note that the control rate in Snd-RT is dynamic,
similar to the music programming system ChucK. Dy-

namic control rate means that the smallest available
time-difference between events is not set to a fixed num-
ber, but can vary. In ChucK, control rate events are
measured in floating numbers, while in Snd-RT the mea-
surement is in frames. So In Chuck, the time difference
can be very small, while in Snd-RT, it can not be smaller
than 1 frame.

would normally not let all instruments play all
the time, causing unnecessary CPU usage. You
would also normally limit the polyphony to a
fixed number, for instance 32 or 64 simultane-
ously sounds, and then immediately schedule
new notes to a free instrument, if there is one.

5 Realtime Memory Allocation

As mentioned, everything inside <rt-stalin>

runs in the audio realtime thread. Allocating
memory inside the audio thread using the OS al-
location function may cause surprising glitches
in sound since it is not guaranteed to be an
O(1) allocator, meaning that it may not al-
ways spend the same amount of time. There-
fore, Snd-RT allocates memory using the Rol-
lendurchmesserzeitsammler [Matheussen, 2009]
garbage collector instead. The memory alloca-
tor in Rollendurchmesserzeitsammler is not only
running in O(1), but it also allocates memory
extremely efficiently. [Matheussen, 2009]

In the following example, it’s clearer that in-
strument data are actually stored in closures
which are allocated during runtime.11 In ad-
dition, the 128 spawned coroutines themselves
require some memory which also needs to be
allocated:

(<rt-stalin>

(range note-num 0 128

(spawn

(define phase 0.0)

(define volume 0.0)

(sound

(out (* volume (sin phase))))

(inc! phase (midi->radians note-num)))

(while #t

(wait-midi :command note-on :note note-num

(set! volume (midi-vol)))

(wait-midi :command note-off :note note-num

(set! volume 0.0)))))

6 Realtime Garbage Collection.
(Creating new instruments only
when needed)

The previous version of the MIDI soft synth did
allocate some memory. However, since all mem-
ory required for the lifetime of the program were
allocated during startup, it was not necessary to
free any memory during runtime.

But in the following example, we simplify the
code further by creating new tones only when
they are needed. And to do that, it is necessary

11Note that memory allocation performed before any
sound block can easily be run in a non-realtime thread
before scheduling the rest of the code to run in realtime.
But that is just an optimization.

to free memory used by sounds not playing
anymore to avoid running out of memory.
Luckily though, freeing memory is taken care
of automatically by the Rollendurchmesserzeit-
sammler garbage collector, so we don’t have
to do anything special:

1| (define-stalin (softsynth)
2| (while #t
3| (wait-midi :command note-on

4| (define osc (make-oscil :freq (midi->hz (midi-note))))
5| (define tone (sound (out (* (midi-vol) (oscil osc)))))

6| (spawn
7| (wait-midi :command note-off :note (midi-note)

8| (stop tone))))))
9|

10| (<rt-stalin>

11| (softsynth))

In this program, when a note-on message is
received at line 3, two coroutines are scheduled:

1. A sound coroutine at line 5.

2. A regular coroutine at line 6.

Afterwards, the execution immediately jumps
back to line 3 again, ready to schedule new
notes.

So the MIDI soft synth is still polyphonic,
and contrary to the earlier versions, the CPU
is now the only factor limiting the number of
simultaneously playing sounds.12

7 Auto-Allocated Variables

In the following modification, the
CLM [Schottstaedt, 1994] oscillator oscil
will be implicitly and automatically allocated
first time the function oscil is called. After
the generator is allocated, a pointer to it is
stored in a special memory slot in the current
coroutine.

Since oscil is called from inside a sound
coroutine, it is natural to store the generator in
the coroutine itself to avoid all tones using the
same oscillator, which would happen if the auto-
allocated variable had been stored in a global
variable. The new definition of softsynth now
looks like this:

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(define tone

(sound (out (* (midi-vol)

(oscil :freq (midi->hz (midi-note)))))))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

12Letting the CPU be the only factor to limit
polyphony is not necessarily a good thing, but doing so
in this case makes the example very simple.

The difference between this version and the
previous one is subtle. But if we instead look
at the reverb instrument in the next section, it
would span twice as many lines of code, and the
code using the reverb would require additional
logic to create the instrument.

8 Adding Reverb. (Introducing
signal buses)

A MIDI soft synth might sound unprofessional
or unnatural without some reverb. In this ex-
ample we implement John Chowning’s reverb13

and connect it to the output of the MIDI soft
synth by using the built-in signal bus system:

(define-stalin (reverb input)

(delay :size (* .013 (mus-srate))

(+ (comb :scaler 0.742 :size 9601 allpass-composed)

(comb :scaler 0.733 :size 10007 allpass-composed)

(comb :scaler 0.715 :size 10799 allpass-composed)

(comb :scaler 0.697 :size 11597 allpass-composed)

:where allpass-composed

(send input :through

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)))))

(define-stalin bus (make-bus))

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(define tone

(sound

(write-bus bus

(* (midi-vol)

(oscil :freq (midi->hz (midi-note)))))))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

(define-stalin (fx-ctrl input clean wet processor)

(+ (* clean input)

(* wet (processor input))))

(<rt-stalin>

(spawn

(softsynth))

(sound

(out (fx-ctrl (read-bus bus)

0.5 0.09

reverb))))

Signal buses are far from being an “unusual
technique”, but in text based languages they
are in disadvantage compared to graphical mu-
sic languages such as Max [Puckette, 2002] or
Pd. In text based languages it’s inconvenient to
write to buses, read from buses, and most im-
portantly; it’s hard to see the signal flow. How-
ever, signal buses (or something which provides

13as implemented by Bill Schottstaedt in the file
”jc-reverb.scm” included with Snd. The fx-ctrl function
is a copy of the function fxctrl implemented in Faust’s
Freeverb example.

similar functionality) are necessary, so it would
be nice to have a better way to handle them.

9 Routing Signals with Dynamic
Scoping. (Getting rid of manually
handling sound buses)

A slightly less verbose way to create, read and
write signal buses is to use dynamic scoping
to route signals. The bus itself is stored in a
coroutine-local variable and created using the
in macro.

Dynamic scoping comes from the fact that
out writes to the bus which was last set up
by in. In other words, the scope for the
current bus (the bus used by out) follows
the execution of the program. If out isn’t
(somehow) called from in, it will instead write
to the bus connected to the soundcard.

For instance, instead of writing:

(define-stalin bus (make-bus))

(define-stalin (instr1)

(sound (write-bus bus 0.5)))

(define-stalin (instr2)

(sound (write-bus bus -0.5)))

(<rt-stalin>

(instr1)

(instr2)

(sound

(out (read-bus bus))))

we can write:

(define-stalin (instr1)

(sound (out 0.5)))

(define-stalin (instr2)

(sound (out -0.5)))

(<rt-stalin>

(sound

(out (in (instr1)

(instr2)))))

What happened here was that the first time
in was called in the main block, it spawned a
new coroutine and created a new bus. The new
coroutine then ran immediately, and the first
thing it did was to change the current bus to
the newly created bus. The in macro also made
sure that all sound blocks called from within
the in macro (i.e. the ones created in instr1 and
instr2) is going to run before the main sound
block. (That’s how sound coroutines are stored
in a tree)

When transforming the MIDI soft synth to
use in instead of manually handling buses, it
will look like this:

;; <The reverb instrument is unchanged>

;; Don’t need the bus anymore:

(define-stalin bus (make-bus))

;; softsynth reverted back to the previous version:
(define-stalin (softsynth)

(while #t

(wait-midi :command note-on
(define tone

(sound (out (* (midi-vol)
(oscil :freq (midi->hz (midi-note)))))))

(spawn
(wait-midi :command note-off :note (midi-note)

(stop tone))))))

;; A simpler main block:

(<rt-stalin>
(sound
(out (fx-ctrl (in (softsynth))

0.5 0.09
reverb))))

10 CPS Sound Generators. (Adding
stereo reverb and autopanning)

Using coroutine-local variables was convenient
in the previous examples. But what happens
if we want to implement autopanning and (a
very simple) stereo reverb, as illustrated by the
graph below?

+-- reverb -> out ch 0
/

softsynth--<
\

+-- reverb -> out ch 1

First, lets try with the tools we have used so
far:

(define-stalin (stereo-pan input c)

(let* ((sqrt2/2 (/ (sqrt 2) 2))
(angle (- pi/4 (* c pi/2)))

(left (* sqrt2/2 (+ (cos angle) (sin angle))))
(right (* sqrt2/2 (- (cos angle) (sin angle)))))

(out 0 (* input left))
(out 1 (* input right))))

(define-stalin (softsynth)
(while #t

(wait-midi :command note-on
(define tone

(sound
(stereo-pan (* (midi-vol)

(oscil :freq (midi->hz (midi-note))))

(/ (midi-note) 127.0))))
(spawn

(wait-midi :command note-off :note (midi-note)
(stop tone))))))

(<rt-stalin>
(sound

(in (softsynth)
(lambda (sound-left sound-right)

(out 0 (fx-ctrl sound-left 0.5 0.09 reverb))
(out 1 (fx-ctrl sound-right 0.5 0.09 reverb))))))

At first glance, it may look okay. But
the reverb will not work properly. The rea-
son is that auto-generated variables used for
coroutine-local variables are identified by their
position in the source. And since the code
for the reverb is written only one place in the

source, but used two times from the same corou-
tine, both channels will use the same coroutine-
local variables used by the reverb; a delay, four
comb filters and four all-pass filters.

There are a few ways to work around this
problem. The quickest work-around is to re-
code ’reverb’ into a macro instead of a function.
However, since neither the problem nor any so-
lution to the problem are very obvious, plus that
it is slower to use coroutine-local variables than
manually allocating them (it requires extra in-
structions to check whether the data has been
allocated14), it’s tempting not to use coroutine-
local variables at all.

Instead we introduce a new concept called
CPS Sound Generators, where CPS stands for
Continuation Passing Style. [Sussman and
Steele, 1975]

10.1 How it works

Working with CPS Sound Generators are simi-
lar to Faust’s Block Diagrams composition. [Or-
larey et al., 2004] A CPS Sound Generator can
also be seen as similar to a Block Diagram in
Faust, and connecting the CPS Sound Genera-
tors is quite similar to Faust’s Block Diagram
Algebra (BDA).

CPS Sound Generators are CPS functions
which are able to connect to other CPS Sound
Generators in order to build up a larger function
for processing samples. The advantage of build-
ing up a program this way is that we know what
data is needed before starting to process sam-
ples. This means that auto-allocated variables
don’t have to be stored in coroutines, but can
be allocated before running the sound block.

For instance, the following code is written in
generator-style and plays a 400Hz sine sound to
the sound card:

(let ((Generator (let ((osc (make-oscillator :freq 400)))
(lambda (kont)

(kont (oscil osc))))))
(sound
(Generator (lambda (sample)

(out sample)))))

The variable kont in the function Generator
is the continuation, and it is always the last ar-
gument in a CPS Sound Generator. A continua-
tion is a function containing the rest of the pro-
gram. In other words, a continuation function

14It is possible to optimize away these checks, but
doing so either requires restricting the liberty of the
programmer, some kind of JIT-compilation, or doing a
whole-program analysis.

will never return. The main reason for program-
ming this way is for generators to easily return
more than one sample, i.e have more than one
output.15

Programming directly this way, as shown
above, is not convenient, so in order to make
programming simpler, some additional syntax
have been added. The two most common oper-
ators are Seq and Par, which behave similar to
the ’:’ and ’,’ infix operators in Faust.16

Seq creates a new generator by connecting gen-
erators in sequence. In case an argument is
not a generator, a generator will automat-
ically be created from the argument.

For instance, (Seq (+ 2)) is the same as
writing

(let ((generator0 (lambda (arg1 kont0)
(kont0 (+ 2 arg1)))))

(lambda (input0 kont1)
(generator0 input0 kont1)))

and (Seq (+ (random 1.0)) (+ 1)) is the
same as writing

(let ((generator0 (let ((arg0 (random 1.0)))
(lambda (arg1 kont0)

(kont0 (+ arg0 arg1)))))
(generator1 (lambda (arg1 kont1)

(kont1 (+ 1 arg1)))))
(lambda (input kont2)

(generator0 input (lambda (result0)

(generator1 result0 kont2)))))

;; Evaluating ((Seq (+ 2) (+ 1)) 3 display)
;; will print 6!

Par creates a new generator by connecting gen-
erators in parallel. Similar to Seq, if an
argument is not a generator, a generator
using the argument will be created auto-
matically.

For instance, (Par (+ (random 1.0)) (+ 1))
is the same as writing:

(let ((generator0 (let ((arg0 (random 1.0)))
(lambda (arg1 kont0)

(kont0 (+ arg0 arg1)))))
(generator1 (lambda (arg1 kont1)

(kont1 (+ 1 arg1)))))

(lambda (input2 input3 kont1)
(generator0 input2

(lambda (result0)
(generator1 input3

(lambda (result1)

(kont1 result0 result1)))))))

;; Evaluating ((Par (+ 2)(+ 1)) 3 4 +) will return 10!

15Also note that by inlining functions, the Stalin
scheme compiler is able to optimize away the extra syn-
tax necessary for the CPS style.

16Several other special operators are available as well,
but this paper is too short to document all of them.

(gen-sound :options generator) is the same
as writing

(let ((gen generator))

(sound :options
(gen (lambda (result0)

(out 0 result0)))))

...when the generator has one output. If
the generator has two outputs, it will look
like this:

(let ((gen generator))
(sound :options

(gen (lambda (result0 result1)
(out 0 result0)
(out 1 result1)))))

...and so forth.

The Snd-RT preprocessor knows if a variable
or expression is a CPS Sound Generator by
looking at whether the first character is capitol.
For instance, (Seq (Process 2)) is equal to
(Process 2), while (Seq (process 2)) is equal to
(lambda (input kont) (kont (process 2 input))),
regardless of how ’Process’ and ’process’ are
defined.

10.2 Handling auto-allocated variables

oscil and the other CLM generators are macros,
and the expanded code for (oscil :freq 440) looks
like this:

(oscil_ (autovar (make_oscil_ 440 0.0)) 0 0)

Normally, autovar variables are translated
into coroutine-local variables in a separate step
performed after macro expansion. However,
when an auto-allocated variable is an argu-
ment for a generator, the autovar surrounding
is removed. And, similar to other arguments
which are normal function calls, the initializa-
tion code is placed before the generator func-
tion. For example, (Seq (oscil :freq 440)) is ex-
panded into:17

(let ((generator0 (let ((var0 (make_oscil_ 440 0.0)))

(lambda (kont)
(kont (oscil_ var0 0 0))))))

(lambda (kont)

(generator0 kont)))

17Since the Snd-RT preprocessor doesn’t know the
number of arguments for normal functions such as oscil ,
this expansion requires the preprocessor to know that
this particular Seq block has 0 inputs. The preprocessor
should usually get this information from the code calling
Seq, but it can also be defined explicitly, for example like
this: (Seq 0 Cut (oscil :freq 440)).

10.3 The Soft Synth using CPS Sound
Generators

(define-stalin (Reverb)
(Seq (all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)
(all-pass :feedback -0.7 :feedforward 0.7)
(all-pass :feedback -0.7 :feedforward 0.7)

(Sum (comb :scaler 0.742 :size 9601)
(comb :scaler 0.733 :size 10007)

(comb :scaler 0.715 :size 10799)
(comb :scaler 0.697 :size 11597))

(delay :size (* .013 (mus-srate)))))

(define-stalin (Stereo-pan c)

(Split Identity
(* left)

(* right)
:where left (* sqrt2/2 (+ (cos angle) (sin angle)))
:where right (* sqrt2/2 (- (cos angle) (sin angle)))

:where angle (- pi/4 (* c pi/2))
:where sqrt2/2 (/ (sqrt 2) 2)))

(define-stalin (softsynth)

(while #t
(wait-midi :command note-on

(define tone

(gen-sound
(Seq (oscil :freq (midi->hz (midi-note)))

(* (midi-vol))
(Stereo-pan (/ (midi-note) 127)))))

(spawn

(wait-midi :command note-off :note (midi-note)
(stop tone))))))

(define-stalin (Fx-ctrl clean wet Fx)

(Sum (* clean)
(Seq Fx

(* wet))))

(<rt-stalin>

(gen-sound
(Seq (In (softsynth))

(Par (Fx-ctrl 0.5 0.09 (Reverb))

(Fx-ctrl 0.5 0.09 (Reverb))))))

11 Adding an ADSR Envelope

And finally, to make the MIDI soft synth sound
decent, we need to avoid clicks caused by sud-
denly starting and stopping sounds. To do this,
we use a built-in ADSR envelope generator (en-
tirely written in Scheme) for ramping up and
down the volume. Only the function softsynth
needs to be changed:

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(gen-sound :while (-> adsr is-running)

(Seq (Prod (oscil :freq (midi->hz (midi-note)))

(midi-vol)

(-> adsr next))

(Stereo-pan (/ (midi-note) 127))))

(spawn

(wait-midi :command note-off :note (midi-note)

(-> adsr stop)))

:where adsr (make-adsr :a 20:-ms

:d 30:-ms

:s 0.2

:r 70:-ms))))

12 Conclusion

This paper has shown a few techniques for doing
low-latency sample-by-sample audio program-

ming.

13 Acknowledgments

Thanks to the anonymous reviewers and Anders
Vinjar for comments and suggestions.

References

William Clinger and Jonathan Rees. 1991.
Revised Report (4) On The Algorithmic Lan-
guage Scheme.

Melvin E. Conway. 1963. Design of a sepa-
rable transition-diagram compiler. Commu-
nications of the ACM, 6(7):396–408.

O.-J. Dahl and K. Nygaard. 1966. SIMULA:
an ALGOL-based simulation language. Com-
munications of the ACM, 9(9):671–678.

Kjetil Matheussen. 2008. Realtime Music
Programming Using Snd-RT. In Proceedings
of the International Computer Music Confer-
ence.

Kjetil Matheussen. 2009. Conservative Gar-
gage Collectors for Realtime Audio Process-
ing. In Proceedings of the International Com-
puter Music Conference, pages 359–366 (on-
line erratum).

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(2):61–68.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of faust, soft
computing.

Miller Puckette. 2002. Max at Seventeen.
Computer Music Journal, 26(4):31–43.

W. Schottstaedt. 1994. Machine Tongues
XVII: CLM: Music V Meets Common Lisp.
Computer Music Journal, 18(2):30–37.

Jr. Steele, Guy Lewis and Gerald Jay
Sussman. 1978. The Revised Report on
SCHEME: A Dialect of LISP. Technical Re-
port 452, MIT.

Gerald Jay Sussman and Jr. Steele,
Guy Lewis. 1975. Scheme: An inter-
preter for extended lambda calculus. In
Memo 349, MIT AI Lab.

Ge Wang and Perry Cook. 2003. ChucK: a
Concurrent and On-the-fly Audio Program-
ming Language, Proceedings of the ICMC.

