
CONSERVATIVE GARBAGE COLLECTORS FOR REALTIME AUDIO

PROCESSING

Kjetil Matheussen

Norwegian Center for Technology in Music and the Arts. (NOTAM) ∗

k.s.matheussen@notam02.no

ABSTRACT

Garbage-producing and efficient programming languages

such as Haskell, Lisp or ML have traditionally not been used

for generating individual samples in realtime. The reason is

a lack of garbage collector fast and predictably enough to

make these languages viable alternatives to C and C++ for

high performing audio DSP. This paper shows how conser-

vative garbage collectors can be used efficiently for realtime

audio signal processing.

Two new garbage collectors are described. The first col-

lector can easily replace garbage collectors in many existing

programming languages and has successfully been used for

the Stalin Scheme implementation. The second garbage col-

lector has a higher memory overhead and requires a simple

write barrier, but does not restrain the amount of memory.

Both collectors find garbage by running a parallel mark-

and-sweep on snapshots. The snapshot buffers are either

copied to between soundcard interrupts or filled up by write

barriers. To ensure predictability, worst-case is simulated

about once a second, and all running garbage collectors are

synchronized to avoid more than one garbage collector to

block audio simultaneously. High performance is maintained

since the collectors should not interfere with inner audio

loops. Benchmarks also show that overhead can be minimal.

1. INTRODUCTION

It is common for music programming systems to provide

pre-programmed sound generators which process blocks of

samples at a time, called “block processing”. Block pro-

cessing makes it possible to achieve high sample throughput

without using low-level languages such as C or C++. Con-

trolling the graph of generators either happens in a separate

process (SuperCollider3 [8]), or by performing smaller jobs

in between computing blocks (Pure Data [9]).

However, only being able to process blocks of samples

is sometimes limiting. This paper describes two garbage col-

lectors supporting hard realtime computation of individual

samples in high-level languages such asHaskell, Lisp orML.

Some relevant properties for realtime audio processing:

∗ Also; Department of Informatics, University of Oslo.

1. The only deadline is the next soundcard interrupt, mean-

ing that it’s only important to compute sound fast enough.

Events generated by the keyboard or other sources do not

require other immediate response than the change in sound

they might cause, and therefore these events can be re-

corded in an external process not requiring garbage collec-

tion. The audio process runs at regular intervals, processing

blocks of samples, and handles the events recorded by the

external process since last time. To achieve perfect accu-

racy, the events can be timestamped.

2. Audio processing algorithms are usually small and require

relatively little pointer-containing memory (most allocated

memory is usually sample buffers). Moreover, in music

programming systems, it is common to run many smaller

jobs simultaneously. These jobs are commonly called “in-

struments”. The amount of memory per heap is reduced if

each instrument uses its own heap.

3. Audio often runs on a general computer where it’s not known

beforehand how many programs are running at once or how

they may use a garbage collector. Therefore, excessive

CPU usage can stack up in unpredictable ways between

soundcard interrupts. One way to avoid this is to let all pro-

grams have strict constant CPU usage, where best-case is

always equal to worst-case. Another way is to synchronize

programs so that only one program uses excessive CPU at

a time.

4. Audio often involves interaction with a user, either by writ-

ing code which performs music directly [3], or by making

applications which depend on user input. Either way, it is

usually not possible to interact very well with programs if

the computer uses more than about 80% CPU time, since

GUI processes, keyboard input, etc. do not respond very

fast then. This leaves about 20% CPU time, which can

be used occasionally by audio code without increasing the

chance of glitches in sound or destroy interactivity.

5. Realtime garbage collectors commonly guarantee a fixed

number of milliseconds of worst-case execution time. But

for audio processing, it may also be necessary for the user

to immediately (i.e. within a second or so) know the con-

sequence of the worst-case. If not, unpredictable sound

glitches may occur.

For example, if a DSP code uses a constant 80% CPU, there

will be a glitch in sound if the collector uses more than 20%

CPU within one audio block. If using more than 20% CPU

only about once an hour, the user would have to test at least

an hour to be comfortable that the code runs properly.

Not being immediately sure whether there will be enough

CPU is unfortunate since music programming is often ex-

perimental, where the user doesn’t want to think too much

about whether the code will always run properly. And when

performing live, perhaps even writing code on stage, it’s not

always an option to test first. And furthermore, as per point

3, it becomes harder to know how CPU usage between si-

multaneously running programs may add up if some of the

programs have a non-immediate worst-case.

1.1. Conservative Garbage Collectors

Both collectors described in this paper are conservative. A

conservative garbage collector considers all memory posi-

tions in the root set or heap as potentially containing a pointer.

When considering all memory positions as potentially hold-

ing a pointer, the code interfacing the collector becomes si-

mpler since it can avoid defining exact pointer positions, whi-

ch also makes it easier to replace garbage collectors in al-

ready existing language implementations. For audioDSP, th-

is also means that inner audio loops should run unmodified.

Many language implementations, such as Stalin Scheme,

Bigloo Scheme, D, and Mono are using a conservative

garbage collector, very often the Boehm-Demers-Weiser

garbage collector (BDW-GC) [4]. And since the garbage

collector often is the biggest (perhaps also the only) hin-

drance for realtime usage, it becomes relatively simple to

enable these languages to produce audio reliably in realtime.

It is however questionable whether a conservative col-

lector can guarantee hard realtime behavior. There are two

reasons why it might not: (1) Fragmentation can cause pro-

grams to run out of memory prematurely. (2) Values in

memory misinterpreted as pointers (false pointers) can cause

unreferenced memory not to be reclaimed. However, false

pointers is unlikely to be a problem on machines with 32 bit

or higher address space, and fragmentation can be prevented

from becoming a problem by using a safety buffer.

2. A SIMPLE CONSERVATIVE GARBAGE

COLLECTOR FOR AUDIO PROCESSING

There are two basic ideas:

1. Simulating worst-case

To achieve a constant execution time and a predictable

overhead, the collector is forced to spend worst-case

amount of time between blocks.

2. Finding garbage in a parallel thread

By finding garbage in a parallel lower-priority thread, the

only critical operation is preparing for a parallel garbage

collection. Simulating worst-case only by preparing a

parallel collection can be both reliable and simple.

2.1. The Basic Technique

The collector works by first allocating a fixed size heap small

enough to be fully copied within this time frame:

m− s (1)

where m is the duration of one audio buffer, and s is the time

a program uses to process all samples in that block of audio.

This heap is used for storing pointer-containing memory. To

achieve a consistent CPU usage during the lifetime of a pro-

gram, its size can not be increased.

’m−s’ means that the size of the pointer-containing heap

is restricted by the speed of the computer and audio latency.

However, since audio data do not contain pointers, alloca-

tion of for instance delay lines or FFT data is not restricted.

Such data can instead be allocated from a separate heap

which does not have to be copied.

Copying the pointer-containing heap within the ’m− s’

time frame is called “taking snapshot”. After taking a snap-

shot, an independently running lower-priority thread is sig-

naled. The lower-priority thread then finds garbage by run-

ning a mark-and-sweep on the snapshot.

Program 1 Basic version
1 mark-and-sweep thread()

2 loop forever

3 wait for mark-and-sweep semaphore

4 run mark and sweep on snapshot

5

6 audio function()

7 produce audio

8 if mark-and-sweep is waiting then

9 copy heappointers and roots to snapshot

10 if there might be garbage then

11 signal mark-and-sweep semaphore

12 endif

13 else

14 copy heappointers and roots to a dummy-snapshot

15 endif

Program 1 shows what has been described so far. (Keep

in mind that Program 1 is only ment as a simple overview of

the basic technique. It has a few shortcomings and problems

which are addressed later in this paper.)

Some comments on Program 1:

• “audio function()” on line 6 is called at regular intervals

to process one block of audio.

• On line 14, the heap is copied to a “dummy-snapshot”.

Copying to a dummy snapshot is necessary to ensure a

constant overhead and to avoid invalidating the real snap-

shot while the garbage collector is running.

Alternatively, we could tell the operating system to sleep

instead of copying to a dummy snapshot, so that other

programs could run in the mean time. However, to avoid

waiting too long or too short, the sleeping function would

need to provide sub-ms accuracy, which is not always

available.

• The check for “if there might be garbage” could for in-

stance be performed by checking the amount of allocated

memory since last collection. This check is not required

for correct operation, but lowers overall CPU usage.

• The “mark-and-sweep” thread (our “lower-priority thread”)

should run with a lower priority than the audio thread so

that it won’t steal time from the audio function. But, this

thread still needs to run with realtime priority or a very

high priority, so that GUI updates etc. can not delay mem-

ory from being reclaimed.

If instruments or applications depend on each other, for

example if one instrument produces audio used by a subse-

quent reverberation instrument, performance can increase if

the snapshot is taken in parallel, as shown in Program 2.

Program 2 Parallel snapshot
mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark and sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if mark-and-sweep is waiting then

copy heappointers and roots to snapshot

if there might be garbage then

signal mark-and-sweep semaphore

else

copy heappointers and roots to dummy-snapshot

endif

signal audio function semaphore

audio function()

wait for audio function semaphore

produce audio

signal snapshot semaphore

2.2. Memory Overhead

The size of the snapshot and the dummy-snapshot is equal

to the heap. When running only one instrument, which re-

quires its own snapshot and dummy snapshot, the memory

usage will triple. But, when several instruments uses the

same garbage collector, where each of them have its own

heap, and only one instrument runs a garbage collection at a

time, the overhead becomes

n+2

n
(2)

where n is the number of instruments.

3. SYNCHRONIZING GARBAGE COLLECTORS

The solution proposed so far is not ideal. Firstly, it’s not ob-

vious how to create an algorithm to get consistant execution

times for taking snapshots if more than one garbage collec-

tor is running at the same time. Secondly, taking full snap-

shots between the processing of every audio buffer wastes

a lot of CPU since it’s not always useful to collect garbage

that often, plus that only parts of the heap is normally used.

Thirdly, the very CPU-intensive use of a dummy snapshot

serves no other purpose than timing. To avoid these prob-

lems, all simultaneously running garbage collectors must be

synchronized. By making sure only one snapshot is taken

at a time on the computer, excessive CPU usage does not

stack up, and it becomes possible to reduce CPU usage in

manifold ways.

3.1. Non-Constant Overhead

By synchronizing garbage collectors (or by running only

one garbage collector at a time), the following optimizations

can be applied:

1. It is only necessary to take snapshot of the complete heap

about once a second (called “full snapshot”). In between,

only the used part(s) of the heap can be copied instead

(called “partial snapshot”). Since the soundcard buffer

is normally refilled somewhere between 50-1500 times a

second, this will eliminate most of the wasted CPU. The

user will still notice when the garbage collector spends too

much time, but now only once a second, which should be

good enough.

2. By making sure that snapshots are never taken two blocks

in a row, spare-time will be available both after producing

audio in the current block, and before producing audio in

the next. The time available for taking snapshots will now

be:

2∗ (m− s) (3)

where m is the duration of one audio buffer, and s is the

duration of processing the samples in that buffer.

3. In case producing audio for any reason takes longer time

than usual, which for instance can happen if creating sound

generators or initializing sample buffers, worst-case can

be lowered by delaying a new snapshot until the next block.

In case a snapshot on a heap not belonging to the current

program has already been initiated in the current block cy-

cle, that snapshot (plus its mark-and-sweep) can be can-

celled and the corresponding audio function can be told to

run without having to wait for the snapshot to finish.

An implementation of a “one-instance only” garbage col-

lector is shown in Program 3. Program 3 differs from one

being synchronized by how it decides whether to signal a

new garbage collection, and whether to do a full snapshot.

3.2. The Synchronization

There are two basic ways to synchronize garbage collec-

tors. The first way is to let the server select which client

is allowed to run a garbage collection in the current audio

buffer cycle. The second way is to let the server itself do the

garbage collection.

Advantages of letting the server itself do the garbage

collection are: (1) Lower memory overhead: Only one snap-

shot buffer is needed on the computer. (2) Only one mark-

and-sweep process is run simultaneously: Less code and

memory is used, which is better for the CPU cache. (3)

The garbage collector runs in a different memory environ-

ment: Making code simpler by automatically removing any

chance of false sharing.

One disadvantage of running the garbage collection on

a server is that it may have to use a large amount of shared

memory. To ensure high performance, shared memory will

be required both for the snapshot heap, roots, and perhaps

for communication between server and clients. Since shared

memory is often a limited resource, this could be a problem.

Program 3 Non-constant overhead
mark-and-sweep thread()

loop forever

wait for mark-and-sweep semaphore

run mark and sweep on snapshot

snapshot thread()

loop forever

wait for snapshot semaphore

if at least one second since last full snapshot then

copy roots to snapshot

copy full heappointers to snapshot

if there might be garbage then

signal mark-and-sweep

else if there might be garbage then

copy roots to snapshot

copy partial heappointers to snapshot

signal mark-and-sweep

else

do nothing

endif

signal audio function

audio function()

wait for audio function semaphore

produce audio

if snapshot is waiting, and

mark-and-sweep is waiting, and

no snapshot was performed last time, and

it didn’t take a long time to produce audio

then

signal snapshot

else

signal audio function

endif

3.3. Memory Overhead

Since the garbage collector does not need to provide consis-

tent CPU overhead when being synchronized, the dummy

snapshot is not needed anymore. Therefore the memory

overhead now becomes:

n+1

n
(4)

where n is the number of heaps connected to or used by the

garbage collector. 1

4. IMPLEMENTATION OF

ROLLENDURCHMESSERZEITSAMMLER

Rollendurchmesserzeitsammler2 (Rollendurch) is a freely

available garbage collector for C and C++ which uses the

techniques described so far in this paper. Rollendurch is

also made to replace the BDW-GC collector [4] in exist-

ing language implementations. Although some of the more

advanced features in BDW-GC are missing, Rollendurch

is still successfully being used instead of BDW-GC in C

sources created by the Stalin Scheme compiler [10, 7].

1However, if running garbage collection on a server, it could be neces-

sary to add another snapshot plus another set of garbage collector threads

to avoid sometimes running both the audio thread and the garbage collector

on the same CPU or access the same snapshot from two different CPUs. In

that case, the memory overhead will be n+2
n

.
2
http://users.notam02.no/˜kjetism/rollendurchmesserzeitsammler/

4.1. Implementation Details

Achieving perfect realtime performance with modern gen-

eral computers is impossible. The reason is unpredictable

thread scheduling schemes, CPU caches, multiple proces-

sors and other factors caused by operating system and hard-

ware. Therefore, Rollendurch adds some extra logic to avoid

unpredictable execution times:

• After allocating memory, a pointer to the allocated mem-

ory block and its size are transported on a ringbuffer from

the audio thread to the garbage collector threads. No infor-

mation about the heap used by the garbage collector, such

as pointers to the next allocated memory block, is stored in

the heap itself. This not only prevents the garbage collector

thread from having to access the heap (which could gen-

erate unpredictable cache misses), but it also makes more

memory available in the heap and lowers snapshot time.

• Similarly, in order for sweep to avoid calling the free func-

tion in the memory manager when finding unreferenced

memory, sweep instead sends sizes and addresses on a

ringbuffer to a special “free thread”. The “free thread”

takes care of freeing memory and it is specified to run on

the same CPU as the audio thread, hence avoiding cache

misses caused by accessing the heap from another CPU.

• Since a conservative garbage collector is not always using

the same amount of memory every time a program is run,

and especially not in one where the garbage collection runs

in parallel with threads allocating memory, 3/4 of the heap

in Rollendurch is dedicated as a safety buffer. If a program

spends more than 1/4 of the heap, a window will appear

on the screen warning the user that the collector can not

guarantee hard realtime performance anymore. For exam-

ple, in a concert situation, if the program suddenly uses

slightly more than 1/4 of the heap (which can happen even

if the program had been previously tested not to use more

than 1/4), the performance of the garbage collector would

still be essentially the same and the collector would not

contribute to glitches in sound.

Only guaranteeing hard realtime performance for 1/4 of

the heap (and slightly above) also makes it possible to ac-

curately adjust the time it takes to simulate worst-case. In

Rollendurch, simulating worst-case happens by first copy-

ing 1/4 of the heap (or more in case more than 1/4 of the

heap is actually in use), and then continue copying the re-

maining heap in small parts as far as possible until a pre-

defined snapshot duration is reached. In other words, tak-

ing full snapshot also serves as a busy-loop timer. The

predefined snapshot duration is calculated at program ini-

tialization by running several full snapshots in a row and

returning the smallest duration of those. The ratio 1/4 was

selected based on observed variance in time taking snap-

shot.

• Although they have almost the same API, the mentioned

ringbuffers are not really ringbuffers, but a data structure

containing two stacks: One stack is used for reading and

the other for writing. The two stacks switch position at the

next garbage collection. Cache misses caused by transport-

ing information about allocated memory back and forth

between threads running on two different CPUs are now

limited to one occurrence per memory position between

each new garbage collection.

4.2. Memory Management

Program 4 shows the default memory manager. Since the

heaps can become extremely fragmented with this mem-

ory manager, Rollendurch also provides an option to use

the “Two Level Segregated Fit” memory manager (TLSF)

[6] instead. TLSF is a memory manager made for hard re-

altime operation which handles fragmentation much better,

but TLSF also spends a little bit more time allocating and

deallocating.

Program 4 The default memory manager
alloc(size)

if pools[size] != NULL then

return pop(pools[size])

else

freemem += size

return freemem-size

endif

free(mem, size)

if freemem-size == mem then

freemem -= size

else

push(mem, pools[size])

endif

4.3. Benchmarks

In these benchmarks, the results of Rollendurch is compared

with the results of a traditional mark-and-sweep collector.

The mark-and-sweep collector was made by slightly modi-

fying Rollendurch. (Compile time option: NO SNAPSHOT).

Both Rollendurch and the traditional mark-and-sweep col-

lector used the efficient memory manager in Program 4. Fur-

thermore, both garbage collectors also used large hash ta-

bles for storing pointers to allocated memory, which should

lower the blocking time for the mark-and-sweep collector.

Program 5Minimal MIDI player written for Stalin Scheme
(<rt-stalin> :runtime-checks #f

(while #t

(wait-midi :command note-on

(define phase 0.0)

(define phase-inc (hz->radians (midi->hz (midi-note))))

(define tone (sound

(out (* (midi-vol) (sin phase)))

(inc! phase phase-inc)))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

For the tests, a 3.10 minute longMIDI file3 was played using

Program 5. Program 5 is a Stalin Scheme program running

in the Snd-Rt music programming system [7]. The proces-

sor was a dual-core Intel T5600 processor (1833MHz) with

3http://www.midisite.co.uk/midi_search/malaguena.html

a shared 2MB of L2 cache running in 32 bit mode. The com-

puter used DDR2 memory running at 667MHz. The T5600

processor does not have an integrated memory controller,

which could have significantly increased the snapshot per-

formance. Time values were gathered using the CPU time

stamp counter (TSC), and all threads were running in re-

altime using either the SCHED FIFO or the SCHED RR

scheduling scheme. All threads were also locked to run on

one CPU only. The size of the pointer-containing heap was

set to 1MB. At most 2.8kB was allocated by the program

at any point in time, and a constant 8kB is allocated during

initialization by Snd-Rt for storing pointers to coroutines.

(Rollendurch should provide predictable performance up to

256kB when using a 1MB pointer-containing heap.) The

size of the non-pointer-containing heap was set to 4MB,

but the size of the non-pointer-containing heap should not

affect the performance in any way.

Mark-and-sweep Rollendurch

Min Avg. Max Min Avg. Max

0.00ms 0.03ms 0.16ms 0.02ms 0.03ms 0.10ms

Table 1. Blocking time during one audio buffer.

Table 1 shows the amount of time the garbage collector

blocks audio processing during one audio buffer. (For Rol-

lendurch, this is the time taking partial snapshot and root

snapshot, while for mark-and-sweep it is the time running

mark). Note that 80.5% (87.4ms out of 108.7ms) of the

time spent by Rollendurch was used taking snapshot of the

roots, which is a constant cost. Furthermore, Rollendurch

takes snapshot of the roots even when it is not necessary,

just to keep the CPU cache warm, while mark-and-sweep

never have to take snapshot of the roots.

Mark-and-sweep Rollendurch

Min Avg. Max Min Avg. Max

n/a n/a n/a 0.42ms 0.43ms 0.47ms

Table 2. Time simulating worst-case.

Table 2 shows the amount of time the collector blocks

audio processing during one audio buffer when simulating

worst-case. Simulating worst-case is required to achieve a

predictable performance and happens about once a second.

Simulating worst-case for mark-and-sweep has not been im-

plemented since it is not known how one would do that. But

if comparing the total time taking partial snapshot in Rol-

lendurch by the total time running mark in mark-and-sweep

(123.5ms
21.2ms

), worst-case for mark-and-sweep would be about

5.8 times higher than Rollendurch. Comparing worst-case

occurrences (instead of combined time) indicates that worst-

case for mark-and-sweep is about 6.5 times higher than Rol-

lendurch (0.156ms
0.0240ms

), but these numbers are more prone to

measurement errors than total time. Worst-case could also

be higher for mark-and-sweep since it’s unknown howmuch

extra time may be spent handling interior pointers (pointers

pointing inside a memory block), and howmuch extra mem-

ory may be unnecessarily scanned because of false point-

ers. However, it is problematic to base the the performance

of worst-case on the performance of non-worst-case since

worst-case is more likely to use memory not in the CPU

cache. Furthermore, mark-and-sweep probably spent a large

amount of time scanning roots, making it even harder to pre-

dict a worst-case.

Mark-and-sweep Rollendurch

3.15% (0.07%) 3.22% (0.16%)

Table 3. CPU usage to play the song.

Table 3 shows average CPU usage of the program to play

the song. The numbers in the parenthesis show the sepa-

rate CPU usage of the two garbage collectors only. Rollen-

durch used a bit more than twice as much CPU than Mark-

and-sweep, but 36.67% of Rollendurch ran in parallel. The

amount of time running in parallel would have been higher

if the program had used more memory. The program using

the mark-and-sweep collector also spent 46 more millisec-

onds to calculate the samples itself, which might be because

mark-and-sweep ran on the same CPU as the audio thread

and therefore could have cooled down the L1 cache.

The time data generated by running the benchmarks can

be downloaded from http://users.notam02.no/˜kjetism/

rollendurchmesserzeitsammler/icmc2009/

5. A GARBAGE COLLECTOR FOR AUDIO

PROCESSING, NOW WITH A WRITE BARRIER

There are a couple of limitations with the first garbage col-

lector:

1. Maximum heap size depends directly on the speed of the

computer and audio buffer size. If the audio buffer size is

reduced by two, the time available for taking a snapshot is

reduced by two as well.

2. If running out of memory, and the programmer increases

the size of the heap, then a larger part of the available time

within one audio buffer is spent taking snapshot, and the

time available for doing audio processing is reduced. To

avoid pre-allocating too much memory for safety, and not

waste CPU taking snapshot of the safety memory, it would

be preferable if the collector could monitor the heap and

automatically allocate more memory when there’s little left,

but then the CPU usage would be unpredictable.

This section presents a solution to these problems us-

ing a very simple write barrier plus increasing the memory

overhead. In this collector, taking a snapshot of the roots is

the only added cost between audio interrupts, which should

normally be a very light operation and also independent of

heap size. Furthermore, if memory is low, additional mem-

ory can be added to the collector during runtime without

also increasing worst-case (although the write barrier in Pro-

gram 7 needs to be extended a little bit first).

5.1. Implementation

To make the write barrier as efficient as possible, two ex-

tra memory blocks are used to store newly written heap-

pointers. These two memory blocks have the same size as

the heap and the snapshot. The write barrier writes to one

of these memory blocks (memblock wb), while the garbage

collector unloads pointers from the other (memblock gc).

The two memory blocks swap position before initiating a

new garbage collection.

Using this write barrier, writing a pointer to the heap

only requires two or three times as many instructions as be-

fore. (In addition, a couple of extra instructions are required

if it’s necessary to check whether the target address belongs

to the heap.)

Program 6 The second garbage collector
ps = sizeof(void*)

heappointers = calloc(ps,FULL_HEAP_SIZE)

snapshot = calloc(ps,FULL_HEAP_SIZE)

memblock_wb = calloc(ps,FULL_HEAP_SIZE)

memblock_gc = calloc(ps,FULL_HEAP_SIZE)

snap_offset = memblock_gc - heappointers

roots_snapshot = malloc(MAX_ROOT_SIZE)

dummy_roots_snapshot = malloc(MAX_ROOT_SIZE)

UNUSED = -1 // Could be NULL as well...

init()

start_lower_priority_thread(gc_thread)

for i = 0 to FULL_HEAP_SIZE do

memblock_gc[i] = UNUSED

memblock_wb[i] = UNUSED

unload_and_reset_memblock()

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

snapshot[i] = memblock_gc[i]

memblock_gc[i] = UNUSED

endif

gc_thread()

loop forever

wait for collector semaphore

unload_and_reset_memblock()

run_mark_and_sweep on snapshot

audio function()

produce audio

if collector is waiting and there might be garbage then

swap(&memblock_gc,&memblock_wb)

snap_offset = memblock_wb - heappointers
copy roots to roots_snapshot

signal collector

else

copy roots to dummy_roots_snapshot

endif

Program 7 The write barrier implemented in C
#define write_heap_pointer(MEMPOS,POINTER)do{ \
void* _gc_pointer=(void*)POINTER; \
char* _gc_mempos=(char*)MEMPOS; \

*((void**)(_gc_mempos+snap_offset)) = _gc_pointer; \

*((void**)_gc_mempos) = _gc_pointer; \
}while(0)

5.2. But what about the Cache?

Although writing pointers to the heap shouldn’t normally

happen inside inner audio loops, hence the additional num-

berof instructions executedby thewrite barrier shouldbe low,

performance could still be reduced since switching between

two memory blocks increases the chance of cache misses.

This is especially unfortunate in case “gc thread” runs on a

different CPU (to increase general performance) since mem-

ory then has to be transported from one cache to another.

A solution to the problem is using another thread for re-

setting memblock gc, one which is specified to run on the

same CPU as the audio function. By using a dedicated

reset thread, the garbage collector will never write to

memblock wb ormemblock gc, and nomemory block is writ-

ten to by more than one CPU. This scheme is implemented

in Program 8.

Unfortunately, switching between two memory blocks

can still cause cache misses, even on a single CPU. And fur-

thermore, the number of cache misses can increase if one

memory block hasn’t been used by the audio code for a

very long time. Program 8 also lowers the chance of unpre-

dictable cache misses by switching between memory blocks

as often as possible.

Another way to swap memory blocks more often is to

run mark-and-sweep in its own thread, and delay the un-

loading of newly written pointers by putting them on a tem-

porary buffer. Before initiating a new mark-and-sweep, the

pointers on the temporary buffer are copied into the snap-

shot, and the buffer is marked as clear. In case the temporary

buffer is full when unloading pointers, the garbage collec-

tor thread just waits until the mark-and-sweep thread is fin-

ished, and then writes to the snapshot directly. When writ-

ing to a temporary buffer instead, the memory blocks can

be switched even while mark-and-sweep is running. This

scheme is not implemented in Program 8.

However, swapping memory blocks frequently might not

be good enough, so future work is benchmarking other alter-

natives such as using a ringbuffer, a hash table, or a couple

of stacks to store newly written heap-pointers.

5.3. Memory Overhead

In this collector, the snapshot can not be shared between

several instruments since the content of the snapshot in the

previous collection is also being used in the current. One

of the memory blocks can however be shared since it’s only

used while initiating a new garbage collection, so the over-

head now becomes
n∗3+1

n
(5)

where n is the number of heaps connected to or used by the

garbage collector.

5.4. Write Barrier for the Roots

It is possible to avoid taking snapshot of the roots as well if

we also use write barriers when writing pointers to the roots.

However, since taking a snapshot of the roots shouldn’t nor-

mally take much time, and that the extra number of write

barriers higher the risk for some of them to occur inside

inner audio loops, overall performance could significantly

decrease.

On the other hand, by including the program stack in

the root set, a new garbage collection could be initiated any-

where in code and take virtually no time, making the collec-

tor capable of hard realtime also for other types of use.

Program 8 A more cache-friendly version
init()

start_lower_priority_thread(reset_memblock_thread)

start_lower_priority_thread(gc_thread)

set_cpu_affinity(0,reset_thread)

set_cpu_affinity(0,audio_thread)

set_cpu_affinity(1,gc_thread)

for i = 0 to FULL_HEAP_SIZE do

memblock_gc[i] = UNUSED

memblock_wb[i] = UNUSED

reset_memblock_thread()

loop forever

wait for reset semaphore

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

memblock_gc[i] = UNUSED

endif

unload_memblock()

for i = 0 to current_size(heappointers) do

if memblock_gc[i] != UNUSED then

snapshot[i] = memblock_gc[i]

endif

gc_thread()

loop forever

wait for collector semaphore

unload_memblock()

signal reset semaphore

if there might be garbage then

run_mark_and_sweep on snapshot

endif

audio function()

produce audio

if first time then

do nothing

else if the dummy snapshot was not used last time then

copy roots to dummy_roots_snapshot

else if collector is waiting, and reset is waiting, then

swap(&memblock_gc,&memblock_wb)

snap_offset = memblock_wb - heappointers
copy roots to roots_snapshot

signal collector

else if mark-and-sweep is using roots_snapshot then

copy roots to dummy_roots_snapshot

else

copy roots to roots_snapshot

endif

6. COMPARISON WITH EARLIER WORK

The author is not aware of any existing work on garbage

collectors specifically made for audio processing, but a few

general realtime garbage collectors have been used for audio

earlier.

James McCartney’s music programming system Super-

collider3 [8] implements the Johnstone-Wilson realtime col-

lector4 [5] to handle input events and control a sound graph.

However, the garbage collector in Supercollider3 is not used

by the program producing samples, only by the program

controlling the sound graph.

Vessel [11] is a system running running on top of the Lua

programming language (http://www.lua.org). Lua has an in-

cremental garbage collector, and contrary to Supercollider3,

this collector runs in the same process as the one generating

samples. It might also be possible to edit individual samples

in realtime in Vessel.

The Metronome garbage collector [2, 1] provides an in-

terface to define how much time can be spent by the collec-

tor within specified time intervals, hence the name “Metro-

nome”. This interface makes it possible to configure the

4This according to an Internet post by James McCartney.
(http://lambda-the-ultimate.org/node/2393)

Metronome collector to use a specified amount of time in

between soundcard interrupts, similar to the collectors de-

scribed in this paper. However, the Metronome collector is

only available for Java, and it requires a read barrier. It is

also uncertain how consistent the CPU usage of this collec-

tor is. For instance, in [1] it is said that:

“an MMU of 70% with a 10 ms time window means

that for any 10 ms time period in the program’s exe-

cution, the application will receive at least 70% of the

CPU time (i.e., at least 7 ms)”

The collectors described in this paper either guarantee a con-

stant overall CPU time, or a guarantee that the user immedi-

ately will discover the consequence of only getting a certain

amount of CPU. Furthermore, theMetronome collector does

not seem to synchronize simultaneously running collectors

to avoid worst-case behaviors to stack up unpredictably.

7. CONCLUSION

This paper has presented two garbage collectors especially

made for high performing realtime audio signal processing.

Both garbage collectors address two properties: 1. The user

needs to immediately know the consequence of worst-case

execution time. 2. Several applications may run simultane-

ously, all sharing common resources and producing samples

within the same time intervals.

The first garbage collector can relatively easily replace

garbage collectors in many existing programming languages,

and has successfully been used for the Stalin Scheme imple-

mentation. The second garbage collector requires at least

twice as much memory, and a very simple write barrier. But

on the plus side, the second garbage collector does not re-

strain the amount of memory, and its write barrier is only

lightly used. The second collector can also be extended to

work with other types of realtime tasks. Ways to make the

collectors more cache-friendly have been discussed as well.

Benchmarks show that conservative garbage collectors

can be used in programs generating individual samples in

realtime without notable loss in performance, at the price

of high memory overhead if only one instrument is running.

Furthermore, taking snapshots doesn’t take much time, and

using pointer-containing heaps in the range of 10MB to

100MB probably works on newer computers without set-

ting high audio latency. (The memory bandwidth of an Intel

Core i7 system is 25.6GB/s, while the computer running the

benchmarks performed at 2.4GB/s.) Considering the 2.8kB

of pointer-containing memory used by the MIDI synthe-

sizer, 100MB should cover most needs. Furthermore, the

limiting factor is memory bandwidth, which can relatively

easily increase in future systems, e.g. by using wider buses.

As a final note, since realtime video signal processing is

similar to audio in which a fixed amount of data is produced

at regular intervals, the same techniques described in this

paper should work for video processing as well.

8. ACKNOWLEDGMENT

Many thanks to David Jeske, Jøran Rudi, Henrik Sundt,

Anders Vinjar and Hans Wilmers for comments and sugges-

tions. A special thanks to Cristian Prisacariu for helping to

get the paper on a better track in the early stage of writing.

Also many thanks to all the anonymous reviewers from the

ISMM2009 conference5 and this ICMC conference.

9. REFERENCES

[1] J. Auerbach, D. F. Bacon, F. Bömers, and P. Cheng,

“Real-time Music Synthesis In Java Using The

Metronome Garbage Collector,” in Proceedings of the

International Computer Music Conference, 2007.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan, “A real-time

garbage collector with low overhead and consistent uti-

lization.” ACM Press, 2003, pp. 285–298.

[3] A. Blackwell and N. Collins, “The programming lan-

guage as a musical instrument,” in In Proceedings of

PPIG05 (Psychology of Programming Interest Group,

2005, pp. 120–130.

[4] H.-J. Boehm, “A garbage collector for C and C++,”

http://www.hpl.hp.com/personal/Hans Boehm/gc/.

[5] M. S. Johnstone, A. Paul, and R. Wilson, “Non-

compacting memory allocation and real-time garbage

collection,” Tech. Rep., 1997.

[6] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF:

A new dynamic memory allocator for real-time sys-

tems,” in ECRTS ’04: Proceedings of the 16th Euromi-

cro Conference on Real-Time Systems. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 79–86.

[7] K. Matheussen, “Realtime music programming using

Snd-Rt,” in Proceedings of the International Computer

Music Conference, 2008, pp. 379–382.

[8] J. McCartney, “Rethinking the computer music lan-

guage: Supercollider,” Computer Music Journal,

vol. 26, no. 2, pp. 61–68, 2002.

[9] M. Puckette, “Max at Seventeen,” Computer Music

Journal, vol. 26, no. 4, pp. 31–43, 2002.

[10] J. M. Siskind, Stalin - a STAtic Language Implementa-

tioN, http://cobweb.ecn.purdue.edu/∼qobi/software.html.

[11] G. D. Wakefield, “Vessel: A Platform for Computer

Music Composition,” Master’s thesis, Media Arts &

Technology program, University of California Santa

Barbara, USA, 2007.

5A prior version of this paper was submitted to ISMM2009.

