
REALTIME MUSIC PROGRAMMING USING SND-RT

Kjetil Matheussen
Norwegian network for Technology, Acoustics and Music. (NOTAM)

k.s.matheussen@notam02.no

ABSTRACT

A revolutionary system for programming sound and
music in realtime is being presented. The system provides
interfaces to extremely efficient high-level and garbage-
producing programming languages, which process indivu-
dal samples at a time, sample by sample, in realtime. This
is possible by using the Rollendurchmesserzeitsammler
garbage collector, the only known conservative garbage
collector suitable for hard realtime audio DSP.

The name of the systen is Snd-Rt. Snd-Rt lives inside
the Snd sound editor and currently consists of a realtime
sound engine, a built-in Scheme-like programming lan-
guage named “RT”, an interface for using the Faust com-
piler, and an interface for using the Stalin Scheme com-
piler. Stalin and “RT” can use CLM for DSP operations,
while Faust uses its own system.

An interactive Lisp interface is provided for all compil-
ers,1 and they all support very efficient sample by sample
processing and strongly timed2 coroutines.3

Snd-Rt has been used for custom DSP routine proto-
typing,4 interactive sound installations,5 live improvisa-
tion (including use of custom-built hardware),6 explorato-
ry music programming,7 surround mixing,8 and to make
general sound applications.9

1. INTRODUCTION

CLM [1] is a sound synthesis package by Bill Schottstaedt
which has been frequently used among composers of elec-
troacoustic music. This paper is about Snd-Rt, one of the
environments CLM runs in. Snd-Rt lives inside the Snd
sound editor,10 and together they provide a pragmatic en-
vironment for realtime music programming.

Snd-Rt provides interactive interfaces to three different
types of compilers, one of which is especially written for
Snd-Rt to provide a general programming language with
support for sample by sample processing using a common

1 A feature increasingly known as “on-the-fly”.
2 The expression “strongly timed” was introduced in ChucK and

means that scheduling is both on time and frame accurate.
3 Faust does not have coroutines by itself, but code created byFaust

can run inside coroutines created by the other two languages
4
http://www.notam02.no/∼kjetism/sandysth/

5
http://www.intravisiongroup.com/projects/borgund/galleri.htm

6
http://www.stanford.edu/∼yusukem/images/SuitableAudio.pdf

7
http://www.notam02.no/∼kjetism/notamkonsert2006/

8
http://lac.linuxaudio.org/?page id=26

9
http://www.notam02.no/∼kjetism/sandysth/

10 Snd is made by Bill Schottstaedt as well

imperative programming style, while Snd provides CLM
and almost everything else. The other two compilers are
Faust [2] and Stalin [3].

Snd-Rt also lives inside the Guile R5RS Scheme inter-
preter, which provides the underlying Lisp environment.
Snd-Rt has familiar programming paradigms for CLM use-
rs, and it provides good performance. One fulfilled goal of
the language was that only changing a few lines should be
necessary for translating a CLM instrument into an Snd-
Rt instrument.

2. THE ENGINE AND THE COMPILERS

2.1. The RT Engine

The RT Engine schedules, mixes and controls the signal
processing jobs.

The main task of the RT Engine is to receive<realtime>
objects created by the compilers, and to provide an inter-
face to control exactly when to run those objects. This
interface is hidden from the user, and is accessed by in-
stead calling methods provided by the<realtime> class.

The RT engine is hard realtime safe, has backend drivers
for both Jack and Pd, provides properly made frame-accur-
ate timing and scheduling, a protection mechanism to avoid
locking up the computer, and is controlled entirely from
Scheme using Guile running inside a Lisp programming
environment such as Emacs.

2.2. Using the “RT” compiler

The “RT” compiler is a compiler for a Scheme-like pro-
gramming language to generate code for the RT Engine.

The “RT” compiler was specifically written for the Snd-
Rt system and is a little bit better suited for live coding
than the other two compilers because of shorter compila-
tion time.

The language is coincidentally quite similar to the Lisp
dialect PreScheme [4], but while PreScheme is a stand-
alone non-interactive programming language, RT is an in-
teractive domain-specific language specialized for music,
sound and realtime.

The RT language is designed to be a pragmatic lan-
guage. It is not always as fast as C, and it is not as practi-
cal and feature rich as Scheme or Common Lisp, but it fits
nicely in between and can provide almost-as-fast-as-C of
usually-high-level-enough code.



The RT language is mostly imperative, but it’s not a
strict imperative language since it has some support for
higher order functions.

The RT programming language includes features such
as infix operators, automatic read access to all Guile Scheme
variables, and write access to some types of variables cre-
ated by Guile. All RT variables and signal buses can be
read and modified from the surrounding Guile environ-
ment as well.

The RT programming language is statically typed with
type inference, and it has full support for Lisp low-level
macros and Lisp structures. Furthermore it has common
music programming language features such as signal buses
and sound buffers, quick GUI support, plug-in support and
midi. OSC is available on request.

The RT compiler works by translating the Scheme-like
input-code into Eval-C code [5]. Eval-C is a domain-
specific language provided by Snd, and is basically just C
using the S-expression syntax plus various syntactic sugar. 11

The RT compiler translates in several stages, which in-
cludes macro expansion, lambda lifting, name mangling,
type inference, syntax checking, etc.

2.3. Using the Faust compiler

Faust is a purely functional language written by Yann Or-
larey which compiles into extremely efficient machine code.

Faust is a very different language than “RT” since the
most common data type seems to the function and not the
sample, where instead of building a program by putting
together functions which handle samples, the programs
are often built by putting together functions which handle
functions .

Snd-Rt’s Faust interface currently has support for GUI,
signal buses and low-level Lisp macros.

2.4. Using the Stalin compiler

Stalin is an almost conforming R4RS Scheme compiler
written by Jeffrey Mark Siskind which produces code of-
ten running faster than hand-written C.

Snd-Rt’s Stalin interface currently has support for midi,
signal buses, low-level Lisp macros, a convenient system
for adding functions, and an interface for adding functions
written in C using the S-expression syntax.

2.5. No control rate and sample by sample processing

A liberating feature of CLM and Snd-Rt is that there is no
control rate, and that every sound frame is automatically
exposed to the programmer, hence supporting sample by
sample processing. Pd, for example, generates 64 frames
at each control rate tick, while the CLM generators only
generates one frame per call.

11 Eval-C was originally written to be a convenient language for writ-
ing Snd-Rt in, and a language for which RT code can be compiled into,
but has later found other uses as well, such as automatically creating
wrappers for C libraries and for gluing separate code parts.

This creates a simpler interface for the user, and re-
moves the need to create generators in a different lan-
guage, usually C or C++.

For example, the following block creates a 400Hz os-
cillator only by using the sine function (sin) and manually
increasing the phase for each sample:
(let ((phase−0.062))

(<rt-out > (sin (inc! phase0.062))))

Exposing every sound frame to the programmer is also
more powerful. For example, a new type of filter can per-
haps be made in Pd by using the z∼ external or similar
mechanisms, but chances are that it is easier to write an
external in C instead. However, in CLM, doing this kind
of operation is both an easy and a straight forward task for
a programmer. An example of such a generator is the San
Dysth synthesis routine shown in the examples section in
this paper.

2.6. Why using compilers?

PD, CSound, the SuperCollider server, and many other,
probably most other, music programming languages are
interpreters since they are dataflow languages where the
advantage of low latency and simpler implementation far
outweighs the advantage of an increased (and usually in-
significant) code efficiency. This is because most of the
CPU is spent inside prebuilt generators in those languages.

However, in systems without a control rate, most of the
time may very well be spent in the language itself, and
the difference in speed between interpreting and running
compiled code is therefore quite significant. This is espe-
cially important when generating sound in realtime, since
we don’t want to hear interruptions in the sound.

2.7. Coroutines and dynamic control rate

Coroutines is a more than 45 year old concept[6] which
is often used for simulating natural processes.[7] Most
programming languages support, or can easely support,
coroutines, and the concept recently appeared as “Shreds”
in the ChucK music programming language.[8] Later, Gra-
ham David Wakefield’s music programming system “Ves-
sel” [9] supported coroutines as well.

Coroutines in the “RT” language are implemented by
providing a dedicated stack for each coroutine, while corou-
tines in Stalin are implemented using continuations and
thecall/ccoperator.

Coroutines are convenient for playing many voices si-
multaniously, and since arbitrarily placed breaks belongs
to the coroutines concept, features such as dynamic con-
trol rate similar to ChucK, pausing, and natural sequential
operations, are almost automatically supported.

However, implementing coroutines efficiently in lan-
guages supporting sample by sample processing requires
some extra care, where the internal coroutine scheduler
needs two separate binary heaps: One binary heap for
coroutines currently doing sample by sample processing
(ie. running inside theblock operator), and one binary
heap for those who currently don’t.



2.8. Dynamic memory allocation

Dynamic memory allocation on the heap is provided by
using “The Audio Rollendurchmesserzeitsammler” con-
servative garbage collector.[10] Rollendurchmesserzeitsam-
mler has been specifically written for Snd-Rt and is the
only known conservative garbage collector suitable for hard
realtime audio DSP.

Currently, Rollendurchmesserzeitsammler is only used
in the “RT” language when creating CLM generators and
Faust instances, but there are plans to support creating lists
and closures as well.

Rollendurchmesserzeitsammler is also used instead of
Hans Boehm’s garbage collector[11] when Stalin is used
as the backend compiler.

Faust does not use the Rolendurchmesserzeitsammler
garbage collector, since Faust doesn’t allocate any mem-
ory during audio processing.

3. EXAMPLES

3.1. Playing A 3 seconds long sound

(<rt-out > :dur 0 3:-s (oscil))

3.2. Coroutines

(<rt-run >

(defineosc(spawn
(debug"Making a sound.")
(block (out (oscil)))))

(wait 5:-s)
(debug"Exactly 5 seconds later.")
(stop osc)
(debug"Now there is silence."))

3.3. Sine-wave grain cloud

(<rt-stalin >

(while #t
(wait (random30):-ms)
(defineosc(make-oscil:freq (between50 2000)))
(definedur (between400 2000):-ms)
(definee (make-env’((0 0)(.5 .05)(1 0)) :dur dur))
(spawn(block :dur dur

(out (∗ (env e) (oscil osc)))))))

3.4. Making an oscillator GUI using Faust 12

(<rt-faust>
(= vol (hslider"volume" .5 .0 1 0.01))
(= freq (hslider"freq" 1000 0 4000 0.1))
(out (vgroup"Osc" (∗ (osci freq) vol))))

3.5. Making an oscillator GUI using “RT”

(<rt-out >
(∗ (<slider> "Amp" 0 0.5 1)

(oscil∗ (<slider> "Freq" 20 200 4000 :log #t))))

3.6. Sequential operation

The following block of code shows how to play a pure
tone for 5 seconds, followed by a 6 seconds long square

12 Faust only uses the S-expression syntax in Snd-Rt

sound, only using features provided by the language and
not having to schedule more than one<realtime> instance:

(<rt-run > (block :dur 5:-s (out (oscil)))
(block :dur 6:-s (out (square-wave))))

Due to the regularity of the above block of code, it’s
tempting to write this generalseqlow-level Lisp macro:

(define-rt-macro (seq. rest)
‘(begin ,@(let loop ((rest rest))

(if (null? rest) ’()
(cons‘(block :dur ,(car rest)

(out ,(cadr rest)))
(loop (cddr rest)))))))

And by using this macro, the operation can be short-
ened into:
(<rt-run > (seq(oscil) 5:-s (square-wave) 6:-s)) 13

3.7. Parallel operation

By using theseqmacro from the sequential example, it’s
just spawning a new coroutine for each sound to run the 5
second pure tone and the 6 second square sound in paral-
lel, still without having to schedule more than one
<realtime> instance:

(<rt-run > (spawn(seq(oscil) 5:-s))
(spawn(seq(square-wave 6:-s))))

Like in the example with the sequential operation, it’s
possible to write a small Lisppar macro to make parallel
operations less verbose.

3.8. Midi synthesizer

This example shows how to implement a very simple poly-
phonic midi soft synth:

(<rt-stalin >

(while #t
(wait-midi :command note-on

(defineosc
(make-oscil:freq (midi-to-freq(midi-note))))

(spawn
(defineplayer

(spawn(block (out (∗ (midi-vol) (oscil osc))))))
(wait-midi :command note-off :note (midi-note)

(stop player))))))

3.9. San Dysth

This example shows a larger example doing sample by
sample processing.

San Dysth [5] is a standalone realtime midi soft syn-
thesizer written in Snd using the Snd-Rt language. San
Dysth’s synthesis technique works by using a set of rules
which change state for each sample.

The functionsan-dysth-dspprovides the main synthe-
sis routine for San-dysth.san-dysth-dspreturns one sam-
ple per call:

13 This seqoperator can not be implemented with functions.



(define-rt (san-dysth-dsp direction)
(cond ((<= val −1) (set! inc-addval#t))

((>= val 1) (set! inc-addval#f))
((> addval max-add-val)
(set!periodcounter period)
(set! inc-addval#f))

((< addval(− max-add-val))
(set!periodcounter period)
(set! inc-addval#t))

((= 0 (inc! periodcounter−1))
(set!periodcounter period)
(set! inc-addval(not inc-addval))))

(definedrunk-change(random max-drunk-change))
(set!addval(filter das-filter(if inc-addval

drunk-change
(− drunk-change))))

(inc! val addval))

For a complete implementation of this routine, please
refer to [5] or San Dysth’s homepage.

3.10. Running Snd as a Pd external

This figure shows Pd using Snd-Rt for doing FM syn-
thesis. Pd and Snd communicate by sending messages
back and forth on two ringbuffer to ensure Guile’s garbage
collector doesn’t interrupt sound processing. However,
Snd-Rt’s signal processing thread runs directly in Pd’s main
thread. Pd can also be started as an Emacs sub-process to
allow interactive development with Pd, Snd and Snd-Rt.

4. FUTURE WORK

The S-expression syntax and the conservative garbage col-
lector could make it very easy to add support for Clean,
Common Lisp, Haskell or other high level languages do-
ing interactive realtime sample by sample processing.

5. CONCLUSION

Snd-Rt together with Snd provide a general and very large
environment for realtime music programming. It also pro-
vides a base environment where operations such as se-
quential processing and parallel processing can both eas-
ily and efficiently be implemented in the language itself.

Snd-Rt also provides convenient access to three very
different, high-level, interactive, and high performing pro-
gramming languages, which all eliminates the use of im-
plementing custom DSP routines in C or C++.

Snd-Rt’s home page contains more detailed informa-
tion about Snd-Rt’s scheduler, the RT compiler, and using
Stalin or Faust together with Snd:
http://www.notam02.no/arkiv/doc/snd-rt/.

6. ACKNOWLEDGEMENTS

The initial work was funded by the Art Council Norway
and NOTAM. Intravision Group later funded the Windows
port.

Thanks to Herman Ruge Jervell, my advisor at the De-
partment of Informatics at University of Oslo for inspi-
ration and liberty in topics to work on; Bjarne Kvinnes-
land and Siren Tjøtta for initiating the work on Snd-Rt
back in 2004; Jøran Rudi, the director at NOTAM, al-
ways supporting my work; Yann Orlarey and Jeffrey Mark
Siskind for helping me using their languages; and finally
Bill Schottstaedt for various help and all his work on CLM
and the fantastic Snd sound editor.

7. WEB LINKS

CLM http://ccrma.stanford.edu/software/clm/
Faust http://faust.grame.fr
Guile http://www.gnu.org/software/guile/guile.html
Jack http://www.jackaudio.org/
Pd http://crca.ucsd.edu/∼msp/software.html
San Dysth http://www.notam02.no/∼kjetism/sandysth/
Snd http://ccrma.stanford.edu/software/snd/
Snd-Rt http://www.notam02.no/arkiv/doc/snd-rt/
Stalin http://cobweb.ecn.purdue.edu/∼qobi/software.html

8. REFERENCES

[1] W. Schottstaedt. Machine tongues xvii: Clm: Mu-
sic v meets common lisp.Computer Music Journal,
18(2):30–37, 1994.

[2] E. Gaudrain and Y. Orlarey. A faust tutorial,
http://faust.grame.fr/pubs.php, 2003.

[3] Jeffrey Mark Siskind. Stalin - a STAtic Language
ImplementatioN,
http://cobweb.ecn.purdue.edu/∼qobi/software.html.

[4] R. Kelsey. Pre-scheme: A scheme dialect for sys-
tems programming, 1997.

[5] K. Matheussen. Extending snd with eval-c and snd-
rt, linux audio conference, 2008.

[6] Melvin E. Conway. Design of a separable transition-
diagram compiler. Communications of the ACM,
6(7):396–408, 1963.

[7] O.-J. Dahl and K. Nygaard. Simula: an algol-based
simulation language.Communications of the ACM,
9(9):671–678, 1966.

[8] Ge Wang and Perry Cook. Chuck: a concurrent and
on-the-fly audio programming language,proceed-
ings of the icmc, 2003.

[9] Graham David Wakefield. Vessel: A platform for
computer music composition,master thesis, 2007.

[10] The audio rollendurchmesserzeitsammler.
http://www.notam02.no/∼kjetism/

rollendurchmesserzeitsammler/.

[11] H.-J. Boehm. A garbage collector for c and c++.
http://www.hpl.hp.com/personal/Hans Boehm/gc/.


