
Implementing a Polyphonic MIDI Software Synthesizer using
Coroutines, Realtime Garbage Collection, Closures,

Auto-Allocated Variables, Dynamic Scoping, and Continuation
Passing Style Programming

Kjetil Matheussen
Norwegian Center for Technology in Music and the Arts. (NOTAM)

k.s.matheussen@notam02.no

Abstract

This paper demonstrates a few programming tech-
niques for low-latency sample-by-sample audio pro-
gramming. Some of them may not have been used
for this purpose before. The demonstrated tech-
niques are: Realtime memory allocation, realtime
garbage collector, storing instrument data implicitly
in closures, auto-allocated variables, handling signal
buses using dynamic scoping, and continuation pass-
ing style programming.

Keywords

Audio programming, realtime garbage collection,
coroutines, dynamic scoping, Continuation Passing
Style.

1 Introduction

This paper demonstrates how to implement a
MIDI software synthesizer (MIDI soft synth)
using some unusual audio programming tech-
niques. The examples are written for Snd-RT
[Matheussen, 2008], an experimental audio pro-
gramming system supporting these techniques.
The techniques firstly emphasize convenience
(i.e. few lines of code, and easy to read and
modify), and not performance. Snd-RT1 runs
on top of Snd2 which again runs on top of the
Scheme interpreter Guile.3 Guile helps gluing
all parts together.

It is common in music programming only to
compute the sounds themselves in a realtime
priority thread. Scheduling new notes, alloca-
tion of data, data initialization, etc. are usually
performed in a thread which has a lower prior-
ity than the audio thread. Doing it this way
helps to ensure constant and predictable CPU
usage for the audio thread. But writing code
that way is also more complicated. At least,
when all samples are calculated one by one. If

1http://archive.notam02.no/arkiv/doc/snd-rt/
2http://ccrma.stanford.edu/software/snd/
3http://www.gnu.org/software/guile/guile.html

however the programming only concerns han-
dling blocks of samples where we only control a
signal graph, there are several high level alter-
natives which makes it relatively easy to do a
straightforward implementation of a MIDI soft
synth. Examples of such high level music pro-
gramming systems are SuperCollider [McCart-
ney, 2002], Pd [Puckette, 2002], CSound4 and
many others.

But this paper does not describe use of block
processing. In this paper, all samples are in-
dividually calculated. The paper also explores
possible advantages of doing everything, alloca-
tion, initialization, scheduling, etc., from inside
the realtime audio thread.

At least it looks like everything is performed
inside the realtime audio thread. The under-
lying implementation is free to reorganize the
code any way it wants, although such reorga-
nizing is not performed in Snd-RT yet.

Future work is making code using these tech-
niques perform equally, or perhaps even better,
than code where allocation and initialization of
data is explicitly written not to run in the real-
time audio thread.

2 MIDI software synthesizer

The reason for demonstrating a MIDI soft synth
instead of other types of music programs such
as a granular synthesis generator or a reverb, is
that the behavior of a MIDI soft synth is well
known, plus that a MIDI soft synth contains
many common challenges in audio and music
programming:

1. Generating samples. To hear sound, we
need to generate samples at the Audio
Rate.

2. Handling Events. MIDI data are read at a
rate lower than the audio rate. This rate is
commonly called the Control Rate.

4http://www.csound.com



3. Variable polyphony. Sometimes no notes
are playing, sometimes maybe 30 notes are
playing.

4. Data allocation. Each playing note re-
quires some data to keep track of frequency,
phase, envelope position, volume, etc. The
challenges are; How do we allocate memory
for the data? When do we allocate memory
for the data? How do we store the memory
holding the data? When do we initialize
the data?

5. Bus routing. The sound coming from the
tone generators is commonly routed both
through an envelope and a reverb. In ad-
dition, the tones may be autopanned, i.e.
panned differently between two loudspeak-
ers depending on the note height (similar
to the direction of the sound coming from
a piano or a pipe organ).

3 Common Syntax for the Examples

The examples are written for a variant of
the programming language Scheme [Steele and
Sussman, 1978]. Scheme is a functional lan-
guage with imperative operators and static
scoping.

A number of additional macros and special
operators have been added to the language, and
some of them are documented here because of
the examples later in the paper.

(<rt-stalin>...) is a macro which first trans-
forms the code inside the block into clean
R4RS code [Clinger and Rees, 1991] un-
derstood by the Stalin Scheme compiler.5

(Stalin Scheme is an R4RS compiler). Af-
ter Stalin is finished compiling the code, the
produced object file is dynamically linked
into Snd-RT and scheduled to immediately
run inside the realtime audio thread.

(define-stalin signature ...) defines variables
and functions which are automatically in-
serted into the generated Stalin scheme
code if needed. The syntax is similar to
define.

(spawn ...) spawns a new coroutine [Conway,
1963; Dahl and Nygaard, 1966]. Corou-
tines are stored in a priority queue and it is
not necessary to explicitly call the spawned

5Stalin - a STAtic Language ImplementatioN,
http://cobweb.ecn.purdue.edu/ qobi/software.html.

coroutine to make it run. The spawned
coroutine will run automatically as soon6

as the current coroutine yields (by calling
yield or wait), or the current coroutine
ends.

Coroutines are convenient in music pro-
gramming since it often turns out practi-
cal to let one dedicated coroutine handle
only one voice, instead of mixing the voices
manually. Furthermore, arbitrarily placed
pauses and breaks are relatively easy to im-
plement when using coroutines, and there-
fore, supporting dynamic control rate simi-
lar to ChucK [Wang and Cook, 2003] comes
for free.

(wait n) waits n number of frames before con-
tinuing the execution of the current corou-
tine.

(sound ...) spawns a special kind of coroutine
where the code inside sound is called one
time per sample. (sound coroutines are
stored in a tree and not in a priority queue
since the order of execution for sound
coroutines depends on the bus system and
not when they are scheduled to wake up.)

A simple version of the sound macro,
called my-sound, can be implemented like
this:

(define-stalin-macro (my-sound . body)
‘(spawn

(while #t
,@body
(wait 1))))

However, my-sound is inefficient compared
to sound since my-sound is likely to do
a coroutine context switch at every call
to wait.7 sound doesn’t suffer from this
problem since it is run in a special mode.
This mode makes it possible to run tight
loops which does not cause a context switch
until the next scheduled event.

(out <channel> sample) sends out data to
the current bus at the current time. (the
current bus and the current time can be
thought of as global variables which are im-
plicitly read from and written to by many

6Unless other coroutines are placed earlier in the
queue.

7I.e. if two or more my-sound blocks or sound blocks
run simultaneously, and at least one of them is a my-

sound block, there will be at least two coroutine context
switches at every sound frame.



operators in the system)8 By default, the
current bus is connected to the sound card,
but this can be overridden by using the
in macro which is explained in more de-
tail later.

If the channel argument is omitted, the
sample is written both to channel 0 and 1.

It makes sense only to use out inside a
sound block. The following example plays
a 400Hz sine sound to the sound card:

(<rt-stalin>
(let ((phase 0.0))

(sound
(out (sin phase))
(inc! phase (hz->radians 400)))))

(range varname start end ...) is a simple lo-
op iterator macro which can be imple-
mented like this:9

(define-macro (range varname start end . body)
(define loop (gensym))
‘(let ,loop ((,varname ,start))

(cond ((<,var ,end)
,@body
(,loop (+ ,varname 1))))))

(wait-midi :options ...) waits until MIDI data
is received, either from an external inter-
face, or from another program.

wait-midi has a few options to specify the
kind of MIDI data it is waiting for. In the
examples in this paper, the following op-
tions for wait-midi are used:

:command note-on
Only wait for a note on MIDI message.

:command note-off
Only wait for a note off MIDI mes-
sage.

:note number
Only wait for a note which has MIDI
note number number.

Inside the wait-midi block we also have
access to data created from the incom-
ing midi event. In this paper we use
(midi-vol) for getting the velocity (con-
verted to a number between 0.0 and 1.0),
and (midi-note) for getting the MIDI
note number.

8Internally, the current bus is a coroutine-local vari-
able, while the current time is a global variable.

9The actual implementation used in Snd-RT also
makes sure that “end” is always evaluated only one time.

:where is just another way to declare local
variables. For example,

(+ 2 b
:where b 50)

is another way of writing

(let ((b 50))
(+ 2 b))

There are three reason for using :where
instead of let. The first reason is that
the use of :where requires less parenthe-
sis. The second reason is that reading the
code sometimes sounds more natural this
way. (I.e “add 2 and b, where b is 50” in-
stead of “let b be 50, add 2 and b”.) The
third reason is that it’s sometimes easier
to understand the code if you know what
you want to do with a variable, before it is
defined.

4 Basic MIDI Soft Synth

We start by showing what is probably the sim-
plest way to implement a MIDI soft synth:

(range note-num 0 128

(<rt-stalin>

(define phase 0.0)

(define volume 0.0)

(sound

(out (* volume (sin phase))))

(inc! phase (midi->radians note-num)))

(while #t

(wait-midi :command note-on :note note-num

(set! volume (midi-vol)))

(wait-midi :command note-off :note note-num

(set! volume 0.0))))

This program runs 128 instruments simul-
taneously. Each instrument is responsible for
playing one tone. 128 variables holding volume
are also used for communicating between the
parts of the code which plays sound (running at
the audio rate), and the parts of the code which
reads MIDI information (running at the control
rate10).

There are several things in this version which
are not optimal. Most important is that you

10Note that the control rate in Snd-RT is dynamic,
similar to the music programming system ChucK. Dy-

namic control rate means that the smallest available
time-difference between events is not set to a fixed num-
ber, but can vary. In ChucK, control rate events are
measured in floating numbers, while in Snd-RT the mea-
surement is in frames. So In Chuck, the time difference
can be very small, while in Snd-RT, it can not be smaller
than 1 frame.



would normally not let all instruments play all
the time, causing unnecessary CPU usage. You
would also normally limit the polyphony to a
fixed number, for instance 32 or 64 simultane-
ously sounds, and then immediately schedule
new notes to a free instrument, if there is one.

5 Realtime Memory Allocation

As mentioned, everything inside <rt-stalin>

runs in the audio realtime thread. Allocating
memory inside the audio thread using the OS al-
location function may cause surprising glitches
in sound since it is not guaranteed to be an
O(1) allocator, meaning that it may not al-
ways spend the same amount of time. There-
fore, Snd-RT allocates memory using the Rol-
lendurchmesserzeitsammler [Matheussen, 2009]
garbage collector instead. The memory alloca-
tor in Rollendurchmesserzeitsammler is not only
running in O(1), but it also allocates memory
extremely efficiently. [Matheussen, 2009]

In the following example, it’s clearer that in-
strument data are actually stored in closures
which are allocated during runtime.11 In ad-
dition, the 128 spawned coroutines themselves
require some memory which also needs to be
allocated:

(<rt-stalin>

(range note-num 0 128

(spawn

(define phase 0.0)

(define volume 0.0)

(sound

(out (* volume (sin phase))))

(inc! phase (midi->radians note-num)))

(while #t

(wait-midi :command note-on :note note-num

(set! volume (midi-vol)))

(wait-midi :command note-off :note note-num

(set! volume 0.0)))))

6 Realtime Garbage Collection.
(Creating new instruments only
when needed)

The previous version of the MIDI soft synth did
allocate some memory. However, since all mem-
ory required for the lifetime of the program were
allocated during startup, it was not necessary to
free any memory during runtime.

But in the following example, we simplify the
code further by creating new tones only when
they are needed. And to do that, it is necessary

11Note that memory allocation performed before any
sound block can easily be run in a non-realtime thread
before scheduling the rest of the code to run in realtime.
But that is just an optimization.

to free memory used by sounds not playing
anymore to avoid running out of memory.
Luckily though, freeing memory is taken care
of automatically by the Rollendurchmesserzeit-
sammler garbage collector, so we don’t have
to do anything special:

1| (define-stalin (softsynth)
2| (while #t
3| (wait-midi :command note-on

4| (define osc (make-oscil :freq (midi->hz (midi-note))))
5| (define tone (sound (out (* (midi-vol) (oscil osc)))))

6| (spawn
7| (wait-midi :command note-off :note (midi-note)

8| (stop tone))))))
9|

10| (<rt-stalin>

11| (softsynth))

In this program, when a note-on message is
received at line 3, two coroutines are scheduled:

1. A sound coroutine at line 5.

2. A regular coroutine at line 6.

Afterwards, the execution immediately jumps
back to line 3 again, ready to schedule new
notes.

So the MIDI soft synth is still polyphonic,
and contrary to the earlier versions, the CPU
is now the only factor limiting the number of
simultaneously playing sounds.12

7 Auto-Allocated Variables

In the following modification, the
CLM [Schottstaedt, 1994] oscillator oscil
will be implicitly and automatically allocated
first time the function oscil is called. After
the generator is allocated, a pointer to it is
stored in a special memory slot in the current
coroutine.

Since oscil is called from inside a sound
coroutine, it is natural to store the generator in
the coroutine itself to avoid all tones using the
same oscillator, which would happen if the auto-
allocated variable had been stored in a global
variable. The new definition of softsynth now
looks like this:

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(define tone

(sound (out (* (midi-vol)

(oscil :freq (midi->hz (midi-note)))))))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

12Letting the CPU be the only factor to limit
polyphony is not necessarily a good thing, but doing so
in this case makes the example very simple.



The difference between this version and the
previous one is subtle. But if we instead look
at the reverb instrument in the next section, it
would span twice as many lines of code, and the
code using the reverb would require additional
logic to create the instrument.

8 Adding Reverb. (Introducing
signal buses)

A MIDI soft synth might sound unprofessional
or unnatural without some reverb. In this ex-
ample we implement John Chowning’s reverb13

and connect it to the output of the MIDI soft
synth by using the built-in signal bus system:

(define-stalin (reverb input)

(delay :size (* .013 (mus-srate))

(+ (comb :scaler 0.742 :size 9601 allpass-composed)

(comb :scaler 0.733 :size 10007 allpass-composed)

(comb :scaler 0.715 :size 10799 allpass-composed)

(comb :scaler 0.697 :size 11597 allpass-composed)

:where allpass-composed

(send input :through

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)))))

(define-stalin bus (make-bus))

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(define tone

(sound

(write-bus bus

(* (midi-vol)

(oscil :freq (midi->hz (midi-note)))))))

(spawn

(wait-midi :command note-off :note (midi-note)

(stop tone))))))

(define-stalin (fx-ctrl input clean wet processor)

(+ (* clean input)

(* wet (processor input))))

(<rt-stalin>

(spawn

(softsynth))

(sound

(out (fx-ctrl (read-bus bus)

0.5 0.09

reverb))))

Signal buses are far from being an “unusual
technique”, but in text based languages they
are in disadvantage compared to graphical mu-
sic languages such as Max [Puckette, 2002] or
Pd. In text based languages it’s inconvenient to
write to buses, read from buses, and most im-
portantly; it’s hard to see the signal flow. How-
ever, signal buses (or something which provides

13as implemented by Bill Schottstaedt in the file
”jc-reverb.scm” included with Snd. The fx-ctrl function
is a copy of the function fxctrl implemented in Faust’s
Freeverb example.

similar functionality) are necessary, so it would
be nice to have a better way to handle them.

9 Routing Signals with Dynamic
Scoping. (Getting rid of manually
handling sound buses)

A slightly less verbose way to create, read and
write signal buses is to use dynamic scoping
to route signals. The bus itself is stored in a
coroutine-local variable and created using the
in macro.

Dynamic scoping comes from the fact that
out writes to the bus which was last set up
by in. In other words, the scope for the
current bus (the bus used by out) follows
the execution of the program. If out isn’t
(somehow) called from in, it will instead write
to the bus connected to the soundcard.

For instance, instead of writing:

(define-stalin bus (make-bus))

(define-stalin (instr1)

(sound (write-bus bus 0.5)))

(define-stalin (instr2)

(sound (write-bus bus -0.5)))

(<rt-stalin>

(instr1)

(instr2)

(sound

(out (read-bus bus))))

we can write:

(define-stalin (instr1)

(sound (out 0.5)))

(define-stalin (instr2)

(sound (out -0.5)))

(<rt-stalin>

(sound

(out (in (instr1)

(instr2)))))

What happened here was that the first time
in was called in the main block, it spawned a
new coroutine and created a new bus. The new
coroutine then ran immediately, and the first
thing it did was to change the current bus to
the newly created bus. The in macro also made
sure that all sound blocks called from within
the in macro (i.e. the ones created in instr1 and
instr2 ) is going to run before the main sound
block. (That’s how sound coroutines are stored
in a tree)

When transforming the MIDI soft synth to
use in instead of manually handling buses, it
will look like this:



;; <The reverb instrument is unchanged>

;; Don’t need the bus anymore:

(define-stalin bus (make-bus))

;; softsynth reverted back to the previous version:
(define-stalin (softsynth)

(while #t

(wait-midi :command note-on
(define tone

(sound (out (* (midi-vol)
(oscil :freq (midi->hz (midi-note)))))))

(spawn
(wait-midi :command note-off :note (midi-note)

(stop tone))))))

;; A simpler main block:

(<rt-stalin>
(sound
(out (fx-ctrl (in (softsynth))

0.5 0.09
reverb))))

10 CPS Sound Generators. (Adding
stereo reverb and autopanning)

Using coroutine-local variables was convenient
in the previous examples. But what happens
if we want to implement autopanning and (a
very simple) stereo reverb, as illustrated by the
graph below?

+-- reverb -> out ch 0
/

softsynth--<
\

+-- reverb -> out ch 1

First, lets try with the tools we have used so
far:

(define-stalin (stereo-pan input c)

(let* ((sqrt2/2 (/ (sqrt 2) 2))
(angle (- pi/4 (* c pi/2)))

(left (* sqrt2/2 (+ (cos angle) (sin angle))))
(right (* sqrt2/2 (- (cos angle) (sin angle)))))

(out 0 (* input left))
(out 1 (* input right))))

(define-stalin (softsynth)
(while #t

(wait-midi :command note-on
(define tone

(sound
(stereo-pan (* (midi-vol)

(oscil :freq (midi->hz (midi-note))))

(/ (midi-note) 127.0))))
(spawn

(wait-midi :command note-off :note (midi-note)
(stop tone))))))

(<rt-stalin>
(sound

(in (softsynth)
(lambda (sound-left sound-right)

(out 0 (fx-ctrl sound-left 0.5 0.09 reverb))
(out 1 (fx-ctrl sound-right 0.5 0.09 reverb))))))

At first glance, it may look okay. But
the reverb will not work properly. The rea-
son is that auto-generated variables used for
coroutine-local variables are identified by their
position in the source. And since the code
for the reverb is written only one place in the

source, but used two times from the same corou-
tine, both channels will use the same coroutine-
local variables used by the reverb; a delay, four
comb filters and four all-pass filters.

There are a few ways to work around this
problem. The quickest work-around is to re-
code ’reverb’ into a macro instead of a function.
However, since neither the problem nor any so-
lution to the problem are very obvious, plus that
it is slower to use coroutine-local variables than
manually allocating them (it requires extra in-
structions to check whether the data has been
allocated14), it’s tempting not to use coroutine-
local variables at all.

Instead we introduce a new concept called
CPS Sound Generators, where CPS stands for
Continuation Passing Style. [Sussman and
Steele, 1975]

10.1 How it works

Working with CPS Sound Generators are simi-
lar to Faust’s Block Diagrams composition. [Or-
larey et al., 2004] A CPS Sound Generator can
also be seen as similar to a Block Diagram in
Faust, and connecting the CPS Sound Genera-
tors is quite similar to Faust’s Block Diagram
Algebra (BDA).

CPS Sound Generators are CPS functions
which are able to connect to other CPS Sound
Generators in order to build up a larger function
for processing samples. The advantage of build-
ing up a program this way is that we know what
data is needed before starting to process sam-
ples. This means that auto-allocated variables
don’t have to be stored in coroutines, but can
be allocated before running the sound block.

For instance, the following code is written in
generator-style and plays a 400Hz sine sound to
the sound card:

(let ((Generator (let ((osc (make-oscillator :freq 400)))
(lambda (kont)

(kont (oscil osc))))))
(sound
(Generator (lambda (sample)

(out sample)))))

The variable kont in the function Generator
is the continuation, and it is always the last ar-
gument in a CPS Sound Generator. A continua-
tion is a function containing the rest of the pro-
gram. In other words, a continuation function

14It is possible to optimize away these checks, but
doing so either requires restricting the liberty of the
programmer, some kind of JIT-compilation, or doing a
whole-program analysis.



will never return. The main reason for program-
ming this way is for generators to easily return
more than one sample, i.e have more than one
output.15

Programming directly this way, as shown
above, is not convenient, so in order to make
programming simpler, some additional syntax
have been added. The two most common oper-
ators are Seq and Par, which behave similar to
the ’:’ and ’,’ infix operators in Faust.16

Seq creates a new generator by connecting gen-
erators in sequence. In case an argument is
not a generator, a generator will automat-
ically be created from the argument.

For instance, (Seq (+ 2)) is the same as
writing

(let ((generator0 (lambda (arg1 kont0)
(kont0 (+ 2 arg1)))))

(lambda (input0 kont1)
(generator0 input0 kont1)))

and (Seq (+ (random 1.0)) (+ 1)) is the
same as writing

(let ((generator0 (let ((arg0 (random 1.0)))
(lambda (arg1 kont0)

(kont0 (+ arg0 arg1)))))
(generator1 (lambda (arg1 kont1)

(kont1 (+ 1 arg1)))))
(lambda (input kont2)

(generator0 input (lambda (result0)

(generator1 result0 kont2)))))

;; Evaluating ((Seq (+ 2) (+ 1)) 3 display)
;; will print 6!

Par creates a new generator by connecting gen-
erators in parallel. Similar to Seq, if an
argument is not a generator, a generator
using the argument will be created auto-
matically.

For instance, (Par (+ (random 1.0)) (+ 1))
is the same as writing:

(let ((generator0 (let ((arg0 (random 1.0)))
(lambda (arg1 kont0)

(kont0 (+ arg0 arg1)))))
(generator1 (lambda (arg1 kont1)

(kont1 (+ 1 arg1)))))

(lambda (input2 input3 kont1)
(generator0 input2

(lambda (result0)
(generator1 input3

(lambda (result1)

(kont1 result0 result1)))))))

;; Evaluating ((Par (+ 2)(+ 1)) 3 4 +) will return 10!

15Also note that by inlining functions, the Stalin
scheme compiler is able to optimize away the extra syn-
tax necessary for the CPS style.

16Several other special operators are available as well,
but this paper is too short to document all of them.

(gen-sound :options generator) is the same
as writing

(let ((gen generator))

(sound :options
(gen (lambda (result0)

(out 0 result0)))))

...when the generator has one output. If
the generator has two outputs, it will look
like this:

(let ((gen generator))
(sound :options

(gen (lambda (result0 result1)
(out 0 result0)
(out 1 result1)))))

...and so forth.

The Snd-RT preprocessor knows if a variable
or expression is a CPS Sound Generator by
looking at whether the first character is capitol.
For instance, (Seq (Process 2)) is equal to
(Process 2), while (Seq (process 2)) is equal to
(lambda (input kont) (kont (process 2 input))),
regardless of how ’Process’ and ’process’ are
defined.

10.2 Handling auto-allocated variables

oscil and the other CLM generators are macros,
and the expanded code for (oscil :freq 440) looks
like this:

(oscil_ (autovar (make_oscil_ 440 0.0)) 0 0)

Normally, autovar variables are translated
into coroutine-local variables in a separate step
performed after macro expansion. However,
when an auto-allocated variable is an argu-
ment for a generator, the autovar surrounding
is removed. And, similar to other arguments
which are normal function calls, the initializa-
tion code is placed before the generator func-
tion. For example, (Seq (oscil :freq 440)) is ex-
panded into:17

(let ((generator0 (let ((var0 (make_oscil_ 440 0.0)))

(lambda (kont)
(kont (oscil_ var0 0 0))))))

(lambda (kont)

(generator0 kont)))

17Since the Snd-RT preprocessor doesn’t know the
number of arguments for normal functions such as oscil ,
this expansion requires the preprocessor to know that
this particular Seq block has 0 inputs. The preprocessor
should usually get this information from the code calling
Seq, but it can also be defined explicitly, for example like
this: (Seq 0 Cut (oscil :freq 440)).



10.3 The Soft Synth using CPS Sound
Generators

(define-stalin (Reverb)
(Seq (all-pass :feedback -0.7 :feedforward 0.7)

(all-pass :feedback -0.7 :feedforward 0.7)
(all-pass :feedback -0.7 :feedforward 0.7)
(all-pass :feedback -0.7 :feedforward 0.7)

(Sum (comb :scaler 0.742 :size 9601)
(comb :scaler 0.733 :size 10007)

(comb :scaler 0.715 :size 10799)
(comb :scaler 0.697 :size 11597))

(delay :size (* .013 (mus-srate)))))

(define-stalin (Stereo-pan c)

(Split Identity
(* left)

(* right)
:where left (* sqrt2/2 (+ (cos angle) (sin angle)))
:where right (* sqrt2/2 (- (cos angle) (sin angle)))

:where angle (- pi/4 (* c pi/2))
:where sqrt2/2 (/ (sqrt 2) 2)))

(define-stalin (softsynth)

(while #t
(wait-midi :command note-on

(define tone

(gen-sound
(Seq (oscil :freq (midi->hz (midi-note)))

(* (midi-vol))
(Stereo-pan (/ (midi-note) 127)))))

(spawn

(wait-midi :command note-off :note (midi-note)
(stop tone))))))

(define-stalin (Fx-ctrl clean wet Fx)

(Sum (* clean)
(Seq Fx

(* wet))))

(<rt-stalin>

(gen-sound
(Seq (In (softsynth))

(Par (Fx-ctrl 0.5 0.09 (Reverb))

(Fx-ctrl 0.5 0.09 (Reverb))))))

11 Adding an ADSR Envelope

And finally, to make the MIDI soft synth sound
decent, we need to avoid clicks caused by sud-
denly starting and stopping sounds. To do this,
we use a built-in ADSR envelope generator (en-
tirely written in Scheme) for ramping up and
down the volume. Only the function softsynth
needs to be changed:

(define-stalin (softsynth)

(while #t

(wait-midi :command note-on

(gen-sound :while (-> adsr is-running)

(Seq (Prod (oscil :freq (midi->hz (midi-note)))

(midi-vol)

(-> adsr next))

(Stereo-pan (/ (midi-note) 127))))

(spawn

(wait-midi :command note-off :note (midi-note)

(-> adsr stop)))

:where adsr (make-adsr :a 20:-ms

:d 30:-ms

:s 0.2

:r 70:-ms))))

12 Conclusion

This paper has shown a few techniques for doing
low-latency sample-by-sample audio program-

ming.

13 Acknowledgments

Thanks to the anonymous reviewers and Anders
Vinjar for comments and suggestions.

References

William Clinger and Jonathan Rees. 1991.
Revised Report (4) On The Algorithmic Lan-
guage Scheme.

Melvin E. Conway. 1963. Design of a sepa-
rable transition-diagram compiler. Commu-
nications of the ACM, 6(7):396–408.

O.-J. Dahl and K. Nygaard. 1966. SIMULA:
an ALGOL-based simulation language. Com-
munications of the ACM, 9(9):671–678.

Kjetil Matheussen. 2008. Realtime Music
Programming Using Snd-RT. In Proceedings
of the International Computer Music Confer-
ence.

Kjetil Matheussen. 2009. Conservative Gar-
gage Collectors for Realtime Audio Process-
ing. In Proceedings of the International Com-
puter Music Conference, pages 359–366 (on-
line erratum).

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(2):61–68.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of faust, soft
computing.

Miller Puckette. 2002. Max at Seventeen.
Computer Music Journal, 26(4):31–43.

W. Schottstaedt. 1994. Machine Tongues
XVII: CLM: Music V Meets Common Lisp.
Computer Music Journal, 18(2):30–37.

Jr. Steele, Guy Lewis and Gerald Jay
Sussman. 1978. The Revised Report on
SCHEME: A Dialect of LISP. Technical Re-
port 452, MIT.

Gerald Jay Sussman and Jr. Steele,
Guy Lewis. 1975. Scheme: An inter-
preter for extended lambda calculus. In
Memo 349, MIT AI Lab.

Ge Wang and Perry Cook. 2003. ChucK: a
Concurrent and On-the-fly Audio Program-
ming Language, Proceedings of the ICMC.


